
Master of Science Thesis

Pulse Shape Discrimination
with a Multi-Parameter
Data-Acquisition System

David Simons

October 1994

VDF/NK 94-45

Cyclotron Laboratory
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Prof. dr. M. J. A. de Voigt
Prof. dr. ir. K. Kopinga
Dr. S. S. Klein
Dr. L. J. van IJzendoorn
Ir. P. H. A. Mutsaers
Drs. A. J. H. Maas

Abstract 2

Abstract

At the Nuclear Physics Techniques group an ion beam is used to perform material
analysis. One of the analysis techniques is the Elastic Recoil Detection Analysis (ERDA)
technique, which is applied for depth profiling light elements, like C,O and N, in a
heavy matrix, like Si. It can be combined with Pulse Shape Discrimination (PSD) to
separate the recoiled particles from the scattered He2+ projectiles that are also
detected. For this purpose a detector with a thin depletion layer (e.g. 15 µm) is used.
Recoils, which are stopped within the depletion layer produce fast output pulses
because the charge they liberate is collected quickly. Scattered projectiles on the other
hand are mostly stopped behind the depletion layer and the charge they liberate is
collected more slowly by diffusion processes and the detector output pulse is slow.
Discrimination between the recoils and the projectiles can be based on analysis of the
detector output pulse shape.
A multi-parameter data-acquisition system has been developed during this master of
science project that can be used to perform experiments with all experiment set-ups. To
illustrate the usefulness and the power of this system ERDA-PSD experiments have
been performed. Compared to conventional PSD, multi-parameter PSD gives a better
separation between the contributions of the recoils and the scattered projectiles.
Moreover, discrimation can be performed more accurately. This improves sensitivity
and allows quantitative analysis of the measured data.

Contents 3

Contents

Abstract 2

Contents 3

Introduction 7

Chapter 1 Techniques, set-ups and data-acquisition 8
1.1 Material analysis .. 8

1.1.1 The PIXE technique.. 9
1.1.2 Ion scattering techniques ... 9
1.1.3 The Channeling technique.. 10

1.2 Experiment set-ups... 10
1.2.1 The microbeam facility ... 10
1.2.2 The ion scattering set-up .. 11
1.2.3 The channeling set-up .. 12

1.3 Multi-parameter data-acquisition .. 12
1.3.1 List mode measurements.. 12
1.3.2 Histogram mode measurements... 13
1.3.3 PhyDAS ... 13
1.3.4 Multi-channel analysers and list mode memories 14
1.3.5 Data transmission and storage .. 15
1.3.6 Columbus .. 16

1.4 Changes in the data-acquisition system .. 17

Chapter 2 The new PhyDAS data-acquisition software 18
2.1 Overview of the existing PhyDAS software ... 18

2.2 The new PhyDAS multi-parameter software... 19
2.2.1 Multi-parameter set-up .. 19
2.2.2 The level structure.. 20

2.3 The new data transfer standard... 21
2.3.1 List mode file format .. 22
2.3.2 Histogram mode file format.. 22

Chapter 3 Specification, design and implementation of
Columbus version 2 23

3.1 Microbeam requirements.. 23
3.1.1 The data base .. 23
3.1.2 The monitoring module... 23
3.2.3 The off-line analysis.. 25
3.1.4 New demands.. 25

3.2 Channeling requirements ... 25
3.2.1 Data base... 25

Contents 4

3.2.2 Monitoring demand... 25
3.2.3 Off-line analysis demand.. 26

3.3 Ion scattering requirements ... 27
3.3.1 Data base requirements ... 27
3.3.2 Monitoring requirements.. 27
3.3.3 Off-line analysis requirements... 27

3.4 Design of the monitoring module ... 27
3.4.1 Monitoring of list mode data .. 28
3.4.2 Monitoring of histogram mode data ... 29

3.5 Design of the data base module.. 29
3.5.1 Data base model.. 29

3.6 Redesign of the user interface .. 31

3.7 Implementation of Columbus version 2 ... 32
3.7.1 Implementation of the new data base model 32
3.7.2 Implementation of the new graphic user interface...................... 32
3.7.3 Implementation of the multi-parameter monitoring module 33

3.8 Suggestions for future work ... 33

Chapter 4 Application: Multi-Parameter Pulse Shape
Discrimination 35

4.1 ERDA theory ... 35
4.1.1 Binary collision kinematics .. 35
4.1.2 Stopping power ... 36
4.1.3 Cross sections.. 37

4.2 PSD theory .. 38
4.2.1 Pulse rise-time analysis.. 40
4.2.2 Pulse height analysis .. 40

4.3 Experiment set-up... 41
4.3.1 The PSD electronics.. 41
4.3.2 The monitor signal electronics ... 42

4.4 Pulse rise-time discrimination measurements .. 43
4.4.1 A thin carbon foil .. 43
4.4.2 A Mylar foil ... 47
4.4.3 A Si2O3N layer on a Si substrate .. 47

4.5 Optimizing the pulse rise-time discrimination .. 50
4.5.1 Different shaping times for the timing parameter 50
4.5.2 Different shaping times for the energy parameter...................... 50
4.5.3 Different detector bias voltages.. 52
4.5.4 An alternative timing circuit.. 53
4.5.5 Different detection angles... 55

4.6 Pulse height discrimination measurements... 57
4.6.1 A thin carbon foil .. 57
4.6.2 A Si2O3N layer on a Si substrate .. 59

4.7 Optimizing the pulse height discrimination .. 59

Contents 5

4.7.1 Variation of the energy shaping times ... 59

4.8 Other improvements ... 59
4.8.1 Alpha suppression with the CFD threshold level 59
4.8.2 Discrimination based on more than two parameters 60

4.9 Encountered problems and effects.. 61
4.9.1 Slitscattering background .. 61
4.9.2 Variation in the channel to energy calibration 62
4.9.3 Broadening and splitting of the alpha peaks and curve.............. 63

Chapter 5 Conclusions and recommendations 66
5.1 The multi-parameter data-acquisition software 66

5.2 Multi-parameter Pulse Shape Discrimination... 66

References 67

Appendix A Changes to the CEDAS software levels 69
A.1 Changes to the routines level... 69

A.1.1 Variables and constants... 69
A.1.2 Routines.. 69

A.2 Changes to the controlling level for list mode experiments.................... 70
A.2.1 Variables and constants... 70
A.2.2 Routines.. 70

A.3 Changes to the controlling level for histogram mode experiments......... 71
A.3.1 Variables and constants... 71
A.3.2 Routines.. 71

Appendix B The list mode file format 72

Appendix C The histogram mode file format 73

Appendix D The user interface module CUI2 74
D.1 Structures... 74

D.2 Routines.. 75

Appendix E The data base module CUIDB2 78
E.1 Structures ... 78

E.2 Variables ... 78

E.3 Routines .. 78

Appendix F The monitoring module CMON2 79
F.1 Structures ... 79

F.2 Variables ... 81

F.3 Routines .. 81

Contents 6

Appendix G The Columbus data base entities 84
G.1 The experiment entity.. 84

G.2 The configuration entity... 85

G.3 The module entity .. 85

G.4 The module component entity.. 86

G.5 The module parameter entity .. 86

G.6 The file series entity... 87

G.7 The monitoring demand entity .. 87

G.8 The graphic entity .. 87

G.9 The sample entity... 88

G.10 The user entity ... 88

G.11 The client entity ... 89

G.12 The analysis demand entity... 89

G.13 The analysis result entity .. 89

G.14 The photo entity ... 90

G.15 The scan pattern entity.. 90

Introduction 7

Introduction

This report gives an overview of the author’s Master of Science project that was
performed at the Nuclear Physics Techniques group. This group develops material
analysis techniques and uses them to analyze samples like biological tissues and
plasma deposited layers. Currently used analysis techniques are the Particle Induced X-
ray Emission (PIXE) technique for trace element analysis, the ion scattering techniques
Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis
(ERDA) for mass analysis and depth profiling and the channeling technique for
structure analysis. These analysis techniques and the experiment set-ups in which
these techniques are exploited are described in chapter 1.
Chapter 1 also describes the available data-acquisition computer system that consists of
a front-end system for experiment control and data collection and of a rear-end system
that stores, processes and monitors the experiment data. Finally, the need to develop
software for this data-acquisition system, that will allow performance of multi-
parameter experiments with all experiment set-ups, is described.
In chapter 2 the development of the software for the PhyDAS front-end data-acquisition
system is described and in chapter 3 an outline is given of the specification, design and
implementation of the new software, called Columbus 2, for the DEC Alpha rear-end
computer system.
An application of the developed multi-parameter data-acquisition software is given in
chapter 4. A number of ERDA experiments with Pulse Shape Discrimination (PSD)
were performed to show that the use of a multi-parameter data-acquisition system
improves the capabilities of this analysis technique.
Finally, chapter 5 gives conclusions and recommendations for future work.

Chapter 1 Techniques, setups and data-acquisition 8

Chapter 1
Techniques, set-ups and data-acquisition

In this chapter an overview is given of the way material analysis is performed by the
EUT Nuclear Physics Techniques group. Section 1.1 describes the techniques that are
used and in section 1.2 the experiment set-ups are discussed. In section 1.3 the data-
acquisition system is treated and section 1.4 concludes with the proposed changes to this
system.

1.1 Material analysis
At the physics department of the Eindhoven University of Technology a Philips AVF
cyclotron is operated that can accelerate protons up to an energy of 26 MeV and alpha
particles up to an energy of 30 MeV. The accelerated beam is used by the Nuclear
Physics Techniques group to perform material analysis on samples like biological
tissues or plasma deposited layers.
The beam is transported from the cyclotron to the several experiment set-ups by a beam
guidance system. An overview of the experiment area is shown in figure 1.1.

The analysis techniques that are currently used are the Particle Induced X-ray
Emission (PIXE) technique for trace element analysis, the ion scattering techniques
Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis
(ERDA) for mass analysis and depth profiling and the channeling technique for
structure analysis. The experiment set-ups are a microbeam facility, an ion scattering

Figure 1.1: Layout of the ground floor of the Cyclotron building. The experiment area is
located in the upper part of the picture. From the cyclotron at the right the beam guidance

system leads the beam to the experiment set-ups

Chapter 1 Techniques, setups and data-acquisition 9

set-up and a channeling set-up. Both the techniques and the experiment set-ups will be
discussed in the following sections.

1.1.1 The PIXE technique
The PIXE technique can be used for trace element analysis of samples. When a sample
is bombarded with charged projectiles, usually protons, electrons are ejected from the
target atoms. When an inner (K- or L-) shell electron is ejected the vacancy will be filled
by an electron from a higher shell under the emission of X-ray radiation (fluorescence)
or the creation of a so-called Auger electron. The energy of the X-ray photon is used to
determine the chemical element of the excited target atom. The detection limit for an
element is a few ppm (parts per million) and is limited by a/o low energy background
radiation like bremsstrahlung.

1.1.2 Ion scattering techniques
Ion scattering techniques can be used for mass analysis and depth profiling of solid
state samples. When bombarding a target an incident projectile can be scattered by a
target atom and it can eject a target atom from the sample as a recoil. The ion
scattering techniques are based on the detection of the scattered projectiles and recoils
by measuring their energy, angle and/or speed. The Rutherford Backscattering
Spectroscopy (RBS) technique is based on the detection of the backscattered projectiles
and is most suitable for profiling heavy elements in a relatively light matrix. The
Elastic Recoil Detection Analysis (ERDA) technique on the other hand, is based on the
detection of the recoils and can be used for profiling light elements like H, N and O in a
relatively heavy matrix.
The mass ratio µ of the masses of the target atom and the projectile can be determined
in several ways. In conventional RBS and ERDA experiments the kinetic energies of the
scattered projectile and the recoil are measured, respectively, while keeping the
detection angles and the initial kinetic energy of the projectile fixed Then the measured
kinetic energy depends on both the mass ratio µ and the depth d in the sample at which
the collision occurred. The distribution of the projectiles initial kinetic energy over the
scattered projectile and the recoil depends only on the mass ratio µ (and the type of
collision: elastic of inelastic). When moving through the sample however, the particles
lose an amount of kinetic energy through interaction with the other target atoms The
amount of energy loss gives information about the depth at which the collision occurred
and can be used for depth profiling. Notice that there is an ambiguity between the mass
identification and the depth profiling, which is inherent to conventional RBS and
ERDA.
A way to remove the mass/depth ambiguity and determine the mass ratio µ and the
scattering depth d uniquely is Coincident Elastic Recoil Detection Analysis (CERDA). In
this technique the kinematic relation between the scattering angle θ of the projectile
and the scattering angle ϕ of the recoil is used to determine the mass ratio µ uniquely.
During a CERDA experiment the angles ϕ and θ are fixed or θ is measured using a large

Chapter 1 Techniques, setups and data-acquisition 10

position sensitive detector while keeping ϕ fixed. The measured kinetic energy will now
provide the depth information.
Another way to determine the mass ratio µ and the scattering depth d uniquely is the
expansion of CERDA with the Time-of-Flight technique (CERDA-TOF). As with the
CERDA technique the mass ratio µ can be derived by measuring both the kinetic energy
of the particles and their flight time over a fixed distance. When a mass selection has
been performed, depth information can be obtained from the kinetic energy.
Another expansion to ERDA is the Pulse Shape Discrimination technique (ERDA-PSD)
In this technique the recoils are separated from the scattered projectiles based on an
analysis of the shape of the output pulse of the particle detector. This technique will be
discussed further in chapter 4.

1.1.3 The Channeling technique
The channeling technique is used to perform structure analysis of crystalline solid state
samples, like the study of crystal deformations and impurities. When the sample
orientation relative to the beam axis is varied a channeling effect may occur when the
ion beam is aligned with one of the crystal axes: the incoming ions are captured within
and guided through the channels that are formed by the atoms along the crystal axis.
This will cause a decrease in the yield of the backscattered projectiles. By studying the
variations in the backscattered yield as a function of the sample orientation information
can be obtained about the structure of the crystal and its deviations from an ideal
crystal without deformations and impurities.

1.2 Experiment set-ups
The above analysis techniques are applied in three experiment set-ups: the microbeam
facility, the ion scattering set-up and the channeling set-up. These three set-ups are
discussed in the following sections.

1.2.1 The microbeam facility
In the microbeam facility a beam of accelerated protons is focused into a beam spot with
a diameter of a few micrometers on the sample, using a pair of slits and a magnetic lens
system consisting of four quadrupole magnets. A schematic overview of the experiment
set-up is shown in figure 1.2.

Chapter 1 Techniques, setups and data-acquisition 11

The two slits are located at a distance of 6 m from each other and determine the object
size and the divergence of the incoming beam. After these slits the beam passes 4
quadrupole magnets, each focusing the beam in one direction and defocusing the beam
in the other direction. By choosing out of a group of suitable combinations of quadrupole
strengths, a net focusing effect is obtained and the beam size is decreased to a few
micrometers in diameter.
Behind the focusing system a scan magnet is located that can deviate the beam and
alter the position of the beam spot on the sample. The target wheel in which up to eight
samples can be placed, can also be moved in the directions normal to the beam axis to
change the position of the beam spot on the sample. The target holder is located in a
vacuum chamber in which also three detectors are positioned. A X-ray detector that is
used in combination with the PIXE technique and a RBS detector for detecting
backscattered projectiles are located backwards and a NFS (Nuclear Forward
Scattering) detector for particles scattered in a forward direction is located behind the
target.

1.2.2 The ion scattering set-up
The ion scattering set-up is used for performing various types of ion scattering
experiments, usually with alpha particles as projectiles. In figure 1.3 a schematic
overview of the ion scattering experiment set-up is shown.

slits quadrupoles scan
magnet target

PIXE detector

RBS detector NFS detector

Focussing Scan

Detection

Figure 1.2: A schematic overview of the microbeam experiment set-up
(Not drawn to scale. Actually the slits are at a distance of 6 m)

Chapter 1 Techniques, setups and data-acquisition 12

The main part of the ion scattering set-up is the scattering chamber (indicated by 2 in
figure 1.3). The accelerated particle beam coming from the cyclotron via the beam
guidance system enters the scattering chamber as indicated by 1 in figure 1.3. The
beam will be aimed at a sample in the target holder. This target holder can be rotated
so the angle of incidence of the beam on the sample can be varied.
Detectors and other objects like slits can be placed in the scattering chamber under all
angles (both forward and backward) with an accuracy of a fraction of a degree and at
different distances from the sample.
Furthermore a flight pipe is connected to the scattering chamber, at present fixed at an
angle of 30 degrees with the beam axis, for performing CERDA-TOF measurements. A
detector can be placed at a distance of about 2 m (in the detector chamber as indicated
by 7 in fig. 1.3) and 3.5 m (in the chamber as indicated by 9) from the sample. The flight
pipe also contains two pairs of slits (indicated by 3 and 8), a valve (indicated by 6) and a
pair of quadrupole magnets. These magnets can be used as a lens system for focusing
recoils onto the detector located at the end of the TOF-pipe.
All kinds of detectors can be used in this set-up, e.g. particle detectors giving a signal
that correlates to the energy of the detected particle or position sensitive detectors that
give, in addition to the energy signal, one or more signals corresponding to the position
where the particle hit the detector.

1.2.3 The channeling set-up
To apply the channeling technique a set-up was build consisting of an ultra high
vacuum chamber containing a manipulator, also called goniometer, that is capable of
rotating a (crystalline) sample in all three directions with steps of less than 1/100
degrees. The sample can also be moved in the directions normal to the beam axis.
A detector located at a backward angle is used to detect the backscattered projectiles.
With this detector a/o the backscattered yield can be measured as a function of the
sample orientation.
A second detector is used to detect the particles that are backscattered on a rotating
vane that is located in the beam guidance system just before the vacuum chamber. The

1
2

34
5

6
7

89

Figure 1.3: A schematic overview (top view) of the ion scattering
experiment set-up. 1) incoming beam 2) scattering chamber 3,8) slit

4,5) quadrupole magnet 6) valve 7,9) detector chamber.

Chapter 1 Techniques, setups and data-acquisition 13

signal of this detector if used for beam current measurements to normalise the signals
from the RBS detector.

1.3 Multi-parameter data-acquisition
In general, when performing experiments using the techniques and experiment set-ups
as described above, a number of signals has to be measured, like energy signals from
detectors, position signals from position sensitive detectors or from the scan magnet in
the microbeam set-up of from the manipulator in the channeling set-up. These signals
that have to be measured are called the experiment parameters. When during an
experiment more than one parameter has to be measured it is called a multi-parameter
experiment. Some of these parameters may be coincident, i.e. they are generated from
the same collision event.
For collecting the data for all parameters, i.e. data-acquisition, a computer system is
used to process all data coming from the experiment, the so-called data-flow. In sections
1.3.1 and 1.3.2 the different ways data can be collected in a multi-parameter
experiment are discussed and in sections 1.3.3 to 1.3.6 the computer system and the
way data is handled by it is discussed

1.3.1 List mode measurements
Measurements of the values for all parameters for every event may be collected in a
(very long) list. This way of data-acquisition is called list mode and is the most powerful
one because all single event data is stored independently without data reduction. A
consequence is a large amount of data that has to be handled and stored. The advantage
of list mode data-acquisition is the possibility of extensive data processing afterwards,
allowing the study of relations between parameters.

1.3.2 Histogram mode measurements
When we are not interested in direct relations between the parameters for every single
event we can work in histogram mode. In this mode a histogram (spectrum) is collected
for every parameter over a pre-set time interval or number of events. Now all single
event relations are thrown away resulting in a reduction of the data flow in comparison
to list mode.
It is up to the experimenter to decide whether to measurements have to be done in list
mode (and keep the possibility of creating the histograms from the list mode data
afterwards) or if the histogram mode will suffice.

1.3.3 PhyDAS
The so-called front-end part of the data-acquisition system is a Physics Data Acquisition
System (PhyDAS) that has been developed at the Physics department of the EUT.
PhyDAS can be divided into two parts: a PhyBUS part and a commercial VME bus part,
connected to each other by a converter. A schematic overview of PhyDAS is given in
figure 1.4.

Chapter 1 Techniques, setups and data-acquisition 14

The PhyBUS is the interface bus to which the interfaces for the control of experiment
set-up, like current sources for magnets, stepping motors of target holders etc. are
connected. Multi-Channel Analyser (MCA) interfaces and list mode memory boards that
are used for the data-acquisition of analogue experiment parameters are also connected
to this bus. The MCA board and the list mode memory board are discussed further in
section 1.3.4.
Interfaces can be connected directly to each other by the Physics Parallel Asynchronous
Data way (PhyPAD) for direct communication without burdening PhyBUS. This option
is used for a/o the coupling between the MCA boards and the corresponding list mode
memories.
In the VME bus a 25 MHz Motorola 68030 microprocessor (M68030) is located together
with a 16 Mbyte VME memory board and a converter that connects PhyDAS to the
Physics Local Area Network (PhyLAN) giving access to a file server for retrieving the
operating system for the M68030 into the VME memory together with user software
programs. PhyDAS can be controlled from a terminal that is connected to the M68030
using a serial RS232 line.
The currently used operating system is PEP030, which includes a line editor and a
program interpreter for writing user software programs. Using so-called shell levels
new commands, functions and variables can be added to the operating system.
Because the serial connection to the terminal is not fast enough for fast transfer of large
amounts of data, this can be done through a transputer link (TL) that can be connected
to other computers.

1.3.4 Multi-channel analysers and list mode memories
A schematic overview of a Multi-Channel Analyser interface is given in figure 1.5.

MCA
list mode
memory

other
interfaces

converter

PhyBUS

VME

PhyPAD

M68030 memory
converter

PhyLAN
data

server

TL

terminal

RS232

VME

Figure 1.4: An overview of the PhyDAS data-acquisition system

Chapter 1 Techniques, setups and data-acquisition 15

A MCA interface board contains two Multi-Channel Analysers with each a 12-bit
analogue-to-digital converter (ADC). When a pulse arrives at the trigger input of an
ADC it will convert the analogue input signal (range 0 through 10 V) into a digital word
(range 0 through 4095). A gate signal indicates whether the converted digital word
should be regarded as valid. Both MCAs have their own (32 bit) histogram memory in
which they can register how may times each digital value occurred. This histogram
memory can be accessed via PhyBUS.
When the PhyPAD output of the MCA board is enabled, the converted digital values are
also sent through FIFO (First In First Out) buffers to the PhyPAD output. If only one
MCA is active (single MCA mode) the words sent to PhyPAD will be 16-bit words (of
which the lower 12 bits contain the ADC data and bit 15 is set when the word should be
regarded invalid). When both MCAs are operating (dual MCA mode) their 16-bit words
are combined into a 32-bit word before they are sent to PhyPAD. Notice that the ADC’s
should both be triggered in order to have a 16-bit value from each ADC that can be
combined into a 32-bit word.
The PhyPAD output of the MCA board is connected to the PhyPAD input of a list mode
memory board. This memory board will store the digital words coming from the MCA
board in list mode. The memory will operate in 16-bit mode or in 32-bit mode, according
to the mode in which the corresponding MCA board works.
The PhyBUS also contains memory boards that are not connected to the PhyPAD
output of a MCA board but to the PhyPAD output of other interfaces that provides
digital words e.g. the scan pattern generator in the microbeam facility that provides 16-
bit position identification numbers via PhyPAD.

1.3.5 Data transmission and storage

histogram
memory

ADC ADC
histogram
memory

FIFO FIFO
MCA

PhyBUS PhyBUS

PhyPAD

Input 2Input 1

gate

signal

trigger gate

signal
trigger

Figure 1.5: A schematic overview of a Multi-Channel Analyser board

Chapter 1 Techniques, setups and data-acquisition 16

When data has been collected by PhyDAS it has to be transferred to the rear-end
computer system where it can be processed. The rear-end system is a Digital AXP
workstation (Alpha) running the VMS the operating system and an X-Windows user-
interface. Connected to it are a/o several 1 Gbyte hard disks.
Because the transputer link from PhyDAS cannot be connected directly to the Alpha, a
data server is used to realise the coupling. A schematic view of this coupling is shown in
figure 1.6.

The PhyDAS system is connected via the transputer link to a transputer interface that
is located in a personal computer acting as the data server. A data server program
running on this PC will allow PhyDAS to write data into files on a virtual hard disk.
This might be the local hard disk in the data server PC, but this disk cannot be accessed
by the Alpha workstation. This problem is solved by adding one of the hard disks of the
Alpha as a virtual hard disk to the data server PC, using Ethernet.

1.3.6 Columbus
When the list mode or histogram mode data is stored into files on the Alpha hard disk it
is available for applications to process it. One of these applications is Columbus which
has been developed for processing data coming from the microbeam experiment set-up.
It has an X Windows based Graphic User Interface and an example of this interface is
given in figure 1.7

PhyDAS

dataserver PC

Transputer
TL

Ethernet

interface

Ethernet
interface

Alpha
Hard disk

Hard disk

Figure 1.6: Schematic overview data transmission from PhyDAS to the Alpha.

Chapter 1 Techniques, setups and data-acquisition 17

Columbus consists of four modules:

1. Data base module
2. Experiment control module
3. Monitoring module
4. Off-line analysis module

ad 1.: The data base is the central module that is used by the other modules. For every
experiment that is performed information about the set-up, user, samples, ion
beam properties can be stored together with the monitoring demand, i.e. what
graphics (graphs or plots of measured data) should be displayed during an
experiment. Furthermore, results from off-line analysis, i.e. analysis afterwards,
may also be stored in the data base.

ad 2.: Columbus should be able to control the experiment by giving commands to the
PhyDAS data-acquisition system and its interfaces. Experiment control by
Columbus has not yet been fully implemented because there is no direct
interaction possible between Columbus and PhyDAS. Experiment control is now
done by the user using the terminal connected to PhyDAS.

ad 3.: During a experiment Columbus provides the possibility to display graphics
containing graphs or plots of the measured data. This is called experiment
monitoring. When PhyDAS has written the collected data into files on the Alpha
hard disk, Columbus can access these files, read the data from it and process it

Figure 1.7: The X Windows GUI of Columbus 1. The main window is shown
along with one of the window for editing the data base.

Chapter 1 Techniques, setups and data-acquisition 18

into the graphics. So Columbus will not monitor the data real-time, i.e. following
the experiment at the same pace with a fixed delay, but on-line, i.e. as fast a
possible. The delay between the collection of the data by PhyDAS and the display
by Columbus depends on the frequency by which PhyDAS writes the data to the
hard disk (the so-called sample time) and on the speed by which Columbus can
process the data into graphics.
The transmission of the data using files on hard disk can also be seen as an
advantage: Data can be re-monitored afterwards, as if the experiment was in
progress, whereby different graphics can be created by changing the monitoring
demand in the data base. This may seem like off-line analysis; the monitoring
should, however, not be expected to give final analysis results. It is meant to give
an overview of the experiment progress and of possible results.

ad 4.: The off-line analysis part of Columbus contains applications that can process the
measured data together with information from the data base into final results.
These analysis results may then also be added to the data base.

1.4 Changes in the data-acquisition system
Both Columbus and most of the PhyDAS data-acquisition software CEDAS (Cyclotron
Eindhoven Data Acquisition Software) have been developed for the microbeam facility
and its experiments. With CEDAS both list mode and histogram mode experiments can
be performed, but only for measuring the fixed set of parameters coming from the
microbeam set-up. General multi-parameter experiments are not possible and
coincidences between parameters are disregarded. Furthermore, the several modules of
Columbus are fully dedicated to the microbeam experiment set-up.
So if we also want to use the combination of PhyDAS and Columbus for multi-
parameter experiments with the ion scattering experiment set-up and channeling
experiments with the channeling experiment set-up changes have to be made to both
the PhyDAS data-acquisition software and Columbus. This has been done during the
first part of the Master of Science project. The new data-acquisition software for the
PhyDAS system is discussed in chapter 2 and the new version of Columbus that was
designed and implemented is discussed in chapter 3.

Chapter 2 The new PhyDAS multi-parameter software 19

Chapter 2
The new PhyDAS data-acquisition software

In this chapter the data-acquisition software for PhyDAS is discussed. Section 2.1 gives
an overview of the existing software and the proposed changes to it. In section 2.2 the
new software is described, including the method for defining a multi-parameter
experiment set-up within PhyDAS. Finally, in section 2.3, new standards for the data
transfer from PhyDAS to the Alpha workstation are presented.

2.1 Overview of the existing PhyDAS software
During the last years software was developed for performing data-acquisition with
PhyDAS. For the microbeam facility software was developed to control the experiment
set-up and to perform focusing experiments, beam diameter measurements and list
mode experiments [ATZ92]. Later, the option of histogram mode experiments was
added [SIM93]. This complete package of software is called Cyclotron Eindhoven Data
Acquisition Software (CEDAS)
Independently, software was developed for the data-acquisition [JON93] and
monitoring [STR93] of simple multi-parameter ion scattering experiments. For
channeling experiments software independently developed to control the experiment
set-up, perform data-acquisition and monitoring [BEU94].
Except for microbeam list mode experiments that were monitored using Columbus,
monitoring of the measured data during experiments was unsatisfactory. The other
experiments were monitored on a low resolution monitor connected to PhyDAS.
So the question arose whether there were possibilities to combine parts of these
software packages into one general purpose program that could be used to control all
experiment set-ups and to perform full (coincident) multi-parameter ion scattering
experiments, microbeam experiments and channeling experiments. Furthermore, if it
would be possible to use Columbus to monitor and analyse the data of all experiments.
The answer to these questions turned out to be positive and the following actions had to
be undertaken to obtain a uniform software package:

1. Modify the CEDAS software to make it support multi-parameter experiments, also
with coincident parameters, in both list mode and histogram mode, so it can be used
for all experiment types.

2. Change Columbus so it can monitor the data from experiments done with the new
CEDAS software.

3. Integrate the software to control the channeling experiment set-up within CEDAS
and modify it such that Columbus can be used for to monitor the channeling
experiments as well.

As a consequence of these changes the existing multi-parameter software will be
superfluous and all data-acquisition will be integrated into one package: CEDAS.

Chapter 2 The new PhyDAS multi-parameter software 20

Action points 1 and 2 have been carried out during this Master of Science project and
the results are discussed in sections 2.2 and 2.3, respectively.

2.2 The new PhyDAS multi-parameter software
In section 2.2.1 the changes to CEDAS are discussed that are required to make it
support multi-parameter experiments. In section 2.2.2 an overview of the new software
itself is given.

2.2.1 Multi-parameter set-up
For every multi-parameter experiment, a number of parameters have to be recorded by
the data-acquisition system. To allow flexible multi-parameter experiments, a standard
is created to define an experiment set-up within PhyDAS, to keep track of all
parameters. The number of parameter has to be known and relations between
parameters, like coincidences, have to be registered. Therefore the parameters are
sorted out into so-called modules. We have to make a difference between list mode
experiments and histogram mode experiments, in the definition of a module:

• List mode module definition
During a list mode experiment the value of every parameter at every event has to be
registered in one or more lists. We sort the parameters that are coincident: all
parameters that are coincident go into one module. So one module only contains
parameters that are coincident with each other. Parameters in one module are not
coincident with parameters from another module.
As a consequence, for every parameter in a certain module, the list length is the
same.

• Histogram mode module definition
When performing histogram mode experiments a histogram is recorded for every
parameter in the experiment. The parameters of which a spectrum has to be
recorded during the same time interval are put into one module. Notice that
this does not require the parameters in one module to be coincident, because single
event relations are not of interest in histogram mode.

Another difference between list mode and histogram mode experiments is the way in
which data is stored during data-acquisition. In list mode we have to store lists of
parameter values and in histogram mode we have to store spectra.

• List mode data storage

The list mode memories are used to store the list mode data for each parameter.
One memory board can contain the list of a single parameter (16-bit mode) or of two
coincident parameters (32-bit mode). When the list mode memory is connected to a
MCA board both the MCA board and the list mode memory should operate in the
same mode. As already indicated the two parameters that are acquired by one
MCA/memory combination in 32-bit mode should be coincident and thus originate
from one module.

Chapter 2 The new PhyDAS multi-parameter software 21

• Histogram mode data storage

The histogram of every parameter is collected in the internal histogram memory of
the corresponding MCA. The histogram memories of both MCAs in one MCA board
operate completely independent when the PhyPAD output of the MCAs to the list
mode memories is disabled. During histogram mode PhyPAD is indeed disabled to
prevent the list mode memories from overload, so now the two parameters do not
have to be coincident. They should be in the same module, however, because both
MCAs in one MCA board are started and stopped at the same time.

After this, an algorithm for defining the multi-parameter set-up within PhyDAS can be
defined. The parameters from every module have to be divided over the memories;
during list mode measurements the list mode memory boards are used for data storage
and during histogram mode measurements the internal histogram mode memories of
the MCA boards are used. Because one definition that can be used for both list mode
and histogram mode is favourable, the following algorithm is chosen.
First, the number of modules of the experiment set-up has to be determined. This is
done with the use of the definitions of the parameter modules as given above.
Then, for every module the number of list mode memory boards has to be defined and
for every memory board it has to be defined if it is used for storing the list of one
parameter or two coincident parameters. This will determine the mode in which each
memory board operates (16 or 32 bit). Furthermore, for every list mode memory it has
to be indicated whether it is connected to the PhyPAD output of a MCA board or to the
PhyPAD output of another interface board that provides digital data. This board is
expected to operate in the same mode as the memory board. So the MCA mode (single
or dual) of each MCA board is determined by the memory mode of the corresponding list
mode memory board.
During histogram mode measurements, PhyPAD remains disabled and the mode in
which the MCA boards operate determines what histogram memories are used.
This algorithm has successfully been implemented into the CEDAS software.

2.2.2 The level structure
The PhyDAS software CEDAS consists of several parts, called levels, that have to be
loaded on top of each other. Upper levels can make use of procedures and variables from
lower levels. Lower levels contain routines for e.g. interface control. These ’low level’
routines simplify the use of interfaces in upper levels. Figure 2.2 shows an overview of
the software levels.

Chapter 2 The new PhyDAS multi-parameter software 22

The four lowest levels are general purpose levels.
• GRAF2

This level contains routines for drawing graphics on the terminal.
• LVL1 - The communication level

The objective of this level is to simplify and speed up the communication between
the PhyDAS system and the terminal through the serial RS232 connection. This is
realised by decoding messages, errors and questions into numbered codes that are
transmitted much faster.

• LVL2 - The interface level
In this level an abstraction is made from the hardware addresses and the interface
control. Every interface is given an index, and via an interface table this index is
related to the appropriate hardware addresses. Furthermore this level contains
routines for starting/stopping interfaces, memory operations, MCA control etc.

• LVL3 - The routines level
In this level the control of the experiment set-up by interfaces is simplified.
Currently, only part from the microbeam set-up, like the quadrupoles, the target
wheel and the scan magnet, can be controlled
Routines were added to define the multi-parameter set-up (the so-called module
definitions). Furthermore, routines were added to start and stop all MCAs instantly
by enabling and disabling the trigger inputs all at once with a relais interface. This
option was necessary for coincidence measurements with more than one MCA board
per module. (See also [JON93], p. 20).
The routines for controlling the channeling set-up have to be added to this level.

• DIAMETER controlling level
This level contains routines to (automatically) focus the beam and to perform beam
diameter measurements with the microbeam set-up. In the future this level may be
used for auto-focusing of the quadrupoles of the ion scattering set-up.

• LISTMODE controlling level
Level for performing list mode measurements. It can now perform full multi-
parameter experiments. The module definition from LVL3 determines what
parameters are to be measured.

• SPECMODE controlling level

lower level GRAF2 terminal graphics levels
LVL1 communication level
LVL2 interface level
LVL3 routines level

DIAMETER controlling level #1
LISTMODE controlling level #2

upper level SPECMODE controlling level #3

Figure 2.2: Overview of the PhyDAS software levels

Chapter 2 The new PhyDAS multi-parameter software 23

For performing histogram mode measurements. This level has also been modified to
work with the new multi-parameter standard. The new file standard (section 2.3.2)
has also been implemented.

In appendix A an overview can be found of all changes that have been made to the
CEDAS software.

2.3 The new data transfer standard
A standard has been designed for transferring data from PhyDAS via the data server to
the Alpha workstation. This standard is implemented in the CEDAS software and the
software for performing channeling experiments. The new version of Columbus (chapter
3) will also accept this new standard and can thus be used to process the data from all
experiments.
Two formats have been developed, one for list mode data and one for histogram mode
data, both of which we are discussed in the following sections.

2.3.1 List mode file format
The list mode files should contain the data that is collected in the list mode memories
for each parameter over some time interval and additional information like the
measuring time, the percentage of dead time, the charge, the number of events in the
list for each parameter and the memory mode.
To make the file transfer as fast as possible for each list mode memory a binary copy of
its contents is put into a file together with a header containing the additional
information. So one file contains the list of one or two parameters, depending on the
memory mode of the corresponding list mode memory. Notice that the file header for
each file corresponding to a memory in the same module has to be equal. A complete
description of the list mode file format is given in appendix B.

2.3.2 Histogram mode file format
A histogram file contains the contents of one histogram memory, thus the spectrum of
only one parameter. This is more flexible than putting all histograms into one file. It
was decided to make the files ASCII-text-files to keep them compatible with earlier
standards (e.g. AXIL).
In addition to the histogram data each file also contains additional information in a
header about the measuring time, the current during the collection of the spectrum, a
possible scan pattern etc. A complete description of the histogram mode format is given
in appendix C.

Chapter 3 The new version of Columbus 24

Chapter 3
Specification, design and implementation of
Columbus version 2

This chapter describes the development of the new version of Columbus. A list of
microbeam requirements for this Columbus 2 is given in section 3.1. The channeling
requirements are listed in section 3.2 and the ion scattering requirements in section 3.3.
Based on these requirements a design was made for the new monitoring module (section
3.4), the new data base module (section 3.5) and the corresponding user-interface (section
3.6). In section 3.7, an overview of the implementation of this design is given. Finally, in
section 3.8 a list of suggestions for future work is presented.

3.1 Microbeam requirements
Most of the requirements of the microbeam set-up for Columbus 2 are already realised
in the first version of Columbus (Columbus 1) of which a full description can be found in
reference [ZWI93]. Columbus 2 will thus have to be compatible with Columbus 1. Some
additional requirements have to be added. All microbeam requirements are listed in the
following sub-sections.

3.1.1 The data base
The objective of the data base is to replace the conventional logbook. All information
that is of interest about the experiment, in addition to the acquired data, should be
stored in the data base.
A microbeam experiment session roughly consists of three parts. First, a focusing
experiment is done to minimize the beam spot size on the sample down to a few µm².
Then a calibration experiment is done before the main experiments can be performed.
For all of these experiments it should be possible to store:
• information about the experiment set-up (number, type, location and composition of

detectors)
• information about the experimenter (name, status, phone)
• information about the samples (analysis demand, thickness, photos, client, position

in target holder)
• information about the scan pattern (shape, size, frequency)
• monitoring demand (number of graphics and type of each graphic)
• analysis results of the off-line analysis
• information about the measured data (location, number and type of files from

PhyDAS)
• general information (date, beam properties)

3.1.2 The monitoring module
The monitoring module can handle list mode data coming from up to three detector
modules (PIXE, RBS, NFS). Every module contains two parameters: the energy signal

Chapter 3 The new version of Columbus 25

from the detector and a position identification number (PIN) from the scan pattern
generator corresponding to a position of the beam on the sample. Columbus can sort
this list mode data into two types of graphics:

1. Energy histogram
The energy list mode data from a module is sorted out into a histogram where limits
can be set on the corresponding PIN data (actually on the x- and y-co-ordinates that
are derived from the PINs). So a position dependent energy spectrum is obtained.
An example of such a histogram is given in figure 3.1.

2. Distribution picture
The position list mode data from a module is sorted out into a distribution picture
where limits can be set on the corresponding energy values. So an energy dependent
distribution picture is obtained. Figure 3.2 shows an example of a distribution
graphic.

Figure 3.1: An PIXE energy histogram graphic created with Columbus 1. A W/Ti chip was
bombarded with 3 MeV protons. The yield is plotted versus the energy channel number.

Chapter 3 The new version of Columbus 26

3.2.3 The off-line analysis
In addition to the monitoring module that will provide on-line information about the
current experiment, off-line analysis is used to process the measured data into final
results like concentration distributions for trace elements. From within Columbus
several off-line analysis programs can be started. These programs are provided data
from the data base. Current off-line analysis programs are:
• SortLMData

A program to sort list mode data into spectra. It has more options than the
monitoring module, e.g. channel compression, and can be run in batch (background)
mode. Unfortunately, this program is only capable of sorting out microbeam list
mode data.

• AXIL
Program for the analysis of PIXE energy spectra.

• Egg
Off-line analysis program for calibration and analysis of RBS and NFS energy
spectra.

3.1.4 New demands
Some new microbeam requirements have to be added to the list of existing demands:
• The possibility to monitor histogram mode experiments.
• The possibility to scale spectra to for example the beam charge.
• The option of graphics with time as a parameter, to monitor for example radiation

damage measurements.
• Option to save graphics that are created by Columbus, so they can be re displayed

later without having to sort the list mode once again.
• The option to handle list mode data of experiments with coincident parameters

Figure 3.2: Distribution graphic created with Columbus 1. The x- and y-position on the
sample are plotted along the horizontal and vertical axis, respectively. The intensity

corresponds to the yield The contours of the W/Ti chip are clearly visible

Chapter 3 The new version of Columbus 27

3.2 Channeling requirements

3.2.1 Data base
The channeling demands for the data base are roughly the same as for the microbeam
experiments. The data base should contain all experiment data like set-up, user and
beam properties. There are however some differences:
• The channeling set-up does not have a scan magnet to move the beam across the

sample. A scan-pattern might be used to move the sample in a pre-defined pattern
with the manipulator.

• More data about the detectors in the set-up is required, because the location, angle
and distance, are not fixed and may change during an experiment.

• The beam current is not measured via a charge collector but via a rotating vane
system. This gives an energy spectrum that can be used to normalize the other
spectra.

3.2.2 Monitoring demand
Three types of measurements are performed during a channeling experiment session:
• Orientation and calibration

Before the main experiments several rough spectra are measured to check the set-
up. Those spectra are measured with all detectors (currently two). Apart from
providing a general check on the system, this can also be used to perform an energy
calibration of the detectors.

• Angular scans
A scan of the sample is made by measuring energy spectra for a series of
orientations of the sample. This is done to roughly scan the sample for the
orientations of the crystal axes.

• Search for the sample orientation with the minimum yield
Finally, the sample orientation where the yield of backscattered projectiles reaches
a minimum is determined. In that case, the beam axis is the aligned with a crystal
axis.

During all of these experiments spectra are recorded for each detector, including the
detector of the rotating vane system. All spectra have to be monitored by Columbus. It
should be possible to use the rotating vane spectrum to normalize all the other spectra.
This is done by integrating a part of the rotating vane spectrum and dividing the yield
of the other spectra by this integral. There are two ways to handle the integration of the
rotating vane spectrum:
• Integration of the rotating vane spectrum by PhyDAS and storage of the integral as

an additional parameter in all the other spectra files that are sent to the Alpha
workstation. Then Columbus can immediately use this additional parameter from
the spectra file to normalize the energy spectrum before displaying it. A
disadvantage of this method is that PhyDAS has to be told what part of the rotating
van spectrum has to be taken into account. This can only be changed afterwards is
the rotating vane spectrum is also stored.

Chapter 3 The new version of Columbus 28

• Both the rotating vane spectrum and the other spectra are sent to the Alpha and
Columbus integrates the rotating vane spectrum before normalizing the other
spectra. In this case an additional feature has to be added to the monitoring module,
i.e. an integration unit.

The integration unit will also be necessary to create plots, or so-called ’minimum plots’
of the backscatter yield as a function of the sample orientation.
An automatic determination of the orientation with the minimum yield will not be
performed by Columbus because direct interaction between Columbus and the PhyDAS
system is only possible by using the serial terminal line that is too slow.

3.2.3 Off-line analysis demand
Off-line analysis programs are needed for e.g. the determination from the angular scan
measurement of the orientation with the minimum yield. All programs must be able to
use data from the data base in Columbus.

3.3 Ion scattering requirements

3.3.1 Data base requirements
Requirements for the data base are similar to those for the other set-ups. All
information about the experiment should be stored, including the information about the
multi-parameter experiment set-up. The expansion to a virtually unlimited number of
coincident parameters instead of just two coincident parameters (energy- and position)
demands a complete redesign of the data base model.

3.3.2 Monitoring requirements
Requirements for the monitoring module are:
• List mode data with up to perhaps even 15 different parameters has to be handled.

A large number of parameters is necessary for e.g. a CERDA-TOF experiment with
two position sensitive detectors (each 3 output parameters) and a timing parameter.

• Function editor and pre-processor for creating new quantities (derived parameters)
from the (primary) parameters in the list mode data. To illustrate this, consider a
TOF experiment where a/o the energy E and the flight time t of a particle are
measured as parameters in a list. Instead of a plot of E vs. t, a plot of Et2 vs. E will
be more useful because the contributions from particles with different mass will be
separated as straight horizontal lines instead of bended curves. Separation is thus
easier and can be performed more accurate.

• Display of spectra of both primary and derived parameters.
• Display of scatterplots, i.e. a plot of the spectrum of two parameters versus each

other.
• The number of conditions (e.g. a limitation on the values for a parameter) on a

spectrum or a scatterplot must be virtually unlimited.

Chapter 3 The new version of Columbus 29

• Finally, when the list mode data has been sorted out into scatterplots, it should be
possible to select areas in these scatterplots and project the contents of the contours
onto the two parameter axes, thus creating conditional histograms.

3.3.3 Off-line analysis requirements
The off-line analysis should offer even more extensive processing of the list mode data.
It depends on computer power, how much of the data processing can be done by the
monitoring module while keeping up with the experiment, and how much has to be done
separately by the off-line analysis module.
The monitoring is expected to give an on-line overview of the experiment while the off-
line analysis will process the list mode data into final results.

3.4 Design of the monitoring module
The monitoring module has to give an overview of the experiment that is being
performed. This is done via graphics that are built from data in the files that have been
created by the PhyDAS system. When new data files are provided by PhyDAS the
graphics are updated. The number of graphics should be virtually unlimited and the
definition of each graphic is taken from the data base.
One experiment at a time is handled. This can be either a list mode experiment or a
histogram mode experiment. Experiments producing both list mode data and histogram
mode data are not yet supported by PhyDAS. So within Columbus we will also keep
these two types of experiments separated.

3.4.1 Monitoring of list mode data
During a multi-parameter list mode experiment, a list of data is measured for each
parameter. These are the primary parameters. Together with primary parameters
several additional parameters like measuring time and beam charge may be provided.
The list mode data has to be sorted out into graphics. Two types of graphics are
available:
• Single parameter histogram.

The list mode data for one parameter is sorted out into a histogram. It should also
be possible to create a histogram of a function of the primary parameters.
Furthermore it should be possible to set windows on (functions of) parameters so a
conditional histogram is obtained. A schematic example of a single parameter
histogram graphic is shown in figure 3.3.

Chapter 3 The new version of Columbus 30

• Two parameter scatterplot.
In a two parameter scatterplot the histogram of two coincident parameters versus
each other is shown. This can be primary or derived parameters and again it should
be possible to set a number of conditions (windows) on parameters (both primary
and derived) to obtain a conditional scatterplot. A schematic example of a scatterplot
is given in figure 3.4.

Furthermore it should be possible to define a contour within a two parameter
scatterplot and project the contents of this contour onto both axes into histograms.
Finally, it should be possible to normalize the yield (for both types of graphics) on an
additional parameter like the beam charge or the measuring time.

3.4.2 Monitoring of histogram mode data
When performing histogram mode experiments a spectrum file series for every
parameter is created by PhyDAS. In addition to the histogram for one parameter, a file
may contain additional parameters, like the measuring time, beam current, detector
angle. These additional parameter are included in the file header.
Two types of graphics can be created:
• Single parameter histogram.

The spectra from each file in the spectrum file series for a parameter are combined
to a sum spectrum for that parameter. It should be possible to normalize the

f(par ..par)1 n

yield

Figure 3.3: Schematic example of a single
parameter histogram graphic.

f(par ..par)1 n

g(par ..par)1 n

color corresponds to the yield

Figure 3.4: Schematic example of a two parameter scatterplot

Chapter 3 The new version of Columbus 31

spectrum on either a additional parameter or on an integral of (a part of) the
histogram of another. This histogram will also look like figure 3.3.

• Single parameter histogram versus additional parameter.
In this case we do not create a sum spectrum from the individual spectra from the
spectra series, but we take one additional parameter from the file header or an
derived parameter, like the integral of a (part of) histogram from another
parameter, and use this as the second parameter in the scatterplot. We then get a
picture that looks like figure 3.4 again. Of course it should be possible to create the
axis projection of the contents of a selected contour. (Example: when performing a
channeling angular scan, a spectrum is measured for a number of angles of the
goniometer. This is stored in one spectrum file series, where the angle is added to
each file as the additional parameter. Creating a scatterplot of the energy spectra
versus the angle, setting a contour on an energy interval and making an projection
on the angle axis results in a ’minimum plot’.

All monitoring requirements for each set-up are fulfilled, when the design for the
monitoring module, as described above, is implemented.

3.5 Design of the data base module
Changing Columbus into a multi-parameter data-acquisition package implies a
complete revision of the data base. For every experiment, storage of the multi-
parameter set-up is required, including coincident modules and a virtually unlimited
number of parameters. Furthermore, the design of the monitoring module implies
changes to the storage of the monitoring demand and the graphic definitions.

3.5.1 Data base model
A schematic overview of a data base design is given in a so-called data base model. A
data base model consists of a number of entities (e.g. an experiment, a user, a sample
and a parameter module). Each entity has its own table with corresponding attributes
(e.g. the user table contains three attributes: an id., a name and a status). A table is a
collection of records (Each user is stored in an individual record). Every record consists
of a number of fields that correspond to the attributes from the record table (The user
record thus contains an id. field, a name field and a status field). Furthermore, a record
has its own unique identification within a table through a key that consists of one or
more fields (Every user gets a unique id.).
A table field can refer to a key field of another table (The experiment table has a field
that refers to the id. of the user that performed the experiment). Thus a relation is
formed between 2 entities. Three types of relations exist:

• 1:1 relation
Suppose the experiment entity has a 1:1 relation with the sample entity. This means
that in each experiment only one sample is used and that each sample is used in
only one experiment.

• 1:n relation

Chapter 3 The new version of Columbus 32

Suppose the user entity has a 1:n relation with the experiment entity. This means
that an experiment is performed by one user, but this user can perform more than
one experiment.

• m:n relation
Suppose the experiment entity has a m:n relation with the module entity. This
means that an experiment uses several modules and that a module is used in
several experiments.

Figure 3.5 gives an overview of the new data base model for Columbus 2. It shows the
entity tables together with their relations.
The central entity is the experiment entity (Experiment table). This can be either a
main experiment, a focusing experiment or a calibration experiment. A main
experiment has a reference to a focusing and a calibration experiment. A calibration
experiment has a reference to a focusing experiment. Furthermore, each experiment
has a reference to the experiment set-up (Configuration table) that was used in the
experiment, to the user (Users table) that performed the experiment, to the sample
(Sample table) that was used, to a scan pattern (Scanpattern table) if it was used and to
a demand for monitoring (Monitoring table).
The sample entity refers to a client (Client table) from which the sample was obtained
and to a description of the analysis (Analysis_demand table) that has to be done. Photos
can be taken from a sample, thus the photo entity (Photo table) refers to the sample.
In the set-up entity (Configuration table) the modules (Module table) of which the set-
up consists, can be selected. Because an experiment set-up can consists of several
modules and a module definition can be used in several set-ups a cross reference is
added (Module_in_Config cross-ref table).
In the monitoring demand the graphics (Graphic table) can be selected that have to be
displayed during monitoring. Again because several graphics can be selected in the
monitoring demand and because a graphic definition can be used in several monitoring
demands a cross reference is added (Graph_in_Mon cross-ref table). A graphic refers to
a parameter module in order to know what parameters (Parameter table) can be used.

Chapter 3 The new version of Columbus 33

The graphic entity relates directly to the parameter entity for setting the parameters
along the axes. Via a cross reference (Par_in_Graph cross-ref table) the
conditions/windows on the parameters are stored.
The components (Component table) from which a module is built are also stored via a
cross reference (Comp_in_Module cross-ref table).
A file series (Fileseries table) points to the experiment and module to which the data in
the files belongs. Similarly, analysis results (Analysis_Result table) point to the
experiment on which the analysis was performed and to the module from which the
data came.
A full discussion of the new data base entities is given in appendix G.

3.6 Redesign of the user interface
A new data base module with new entities and new data fields also requires a redesign
of the user interface for editing the data base. The functionality of the user interface is

Parameter Par_in_Module

Par_in_Graph Comp_in_Module Component

Graphic Module Module_in_Config

Graph_in_Mon Fileseries Analysis_Result Configuration

Monitoring Experiment

Users Sample Client

Scanpattern Analysis_Demand Photo

A B

A A_in_B B : A has a m:n relation with B

: A has an 1:n relation with B

(A_in_B is the cross-reference)

Figure 3.5: The new data base model

Chapter 3 The new version of Columbus 34

kept the same as in the previous version. The new lay-out for every entity dialog is
shown in appendix G together with the description of these entities.

3.7 Implementation of Columbus version 2

3.7.1 Implementation of the new data base model
The data base of Columbus 1 was a simple ASCII data base where the records were
saved in a ASCII text files without any structures. When the amount of data that was
stored in the data base became large, data base actions like storage and retrieval would
slow down rapidly. Furthermore, no consistency check, i.e. checking if the contents of
the data base are correct and valid, was performed at all. Although this data base was
originally implemented as a temporary version it has never been replaced.
Because the data base module had to be rewritten anyway to make it support the new
data base model, it was decided to replace the text based data base by the commercial
data base Oracle. A complete description of the implementation of the Oracle data base
and the integration in Columbus is given in reference [GER94].

3.7.2 Implementation of the new graphic user interface
In addition to the changes in the data base model itself, the graphic user interface of
Columbus that is used to edit the data base entities was modified. The user interface of
Columbus 1 was written in X Windows using the DEC Windows Toolkit (DWT), which
is commonly used on DEC VAX stations. The ’look and feel’ of DWT, i.e. the way the
user interface looks and responds to the user, is flat and simple in contrast to the Motif
Toolkit, that is available on the DEC Alpha station. The ’look and feel’ of this
windowing system is more fancy and up-to-date and furthermore, Motif has become a
standard for X Windows systems. So the complete graphic user interface for the new
version of Columbus has been rewritten using the X Windows Motif Toolkit. A capture
of the main window of Columbus 2 is given in figure 3.6.

Chapter 3 The new version of Columbus 35

An overview of the user interface dialogs to edit the data base entities is given in
appendix G together with the description of every data base entity.

3.7.3 Implementation of the multi-parameter monitoring module
A list of the accomplished implementations of the design for the new monitoring module
(see section 3.5) is given below.
• Multi-parameter list mode experiments can be monitored. After selecting one of the

experiments from the data base, the data from the corresponding list mode file
series are monitored.

• The list mode data can be sorted out into a one parameter histogram and into two
parameter scatterplots. The graphic definitions are taken from the data base. The
parameters that are used in a scatterplot should be coincident and must thus in the
same parameter module.

• In a two parameter scatterplot a polygonal contour, that indicates a region of
interest, can be defined by using the mouse to indicate the corners of the contour.
The contents of this contour can then be projected onto both the x-axis and the y-
axis into conditional single parameter spectra.

• In data base graphic definitions a virtually unlimited number of conditions (channel
windows) can be set on the graphics module parameters. An event from the list is
only used to update a graphic if all conditions are satisfied.

• General features like resizing graphics, expanding regions of a graphic, linear or
logarithmic yield scales, hardcopies of a graphic to the Paintjet colour printer or to a
.PPM file have been implemented.

• The number of graphics is virtually unlimited. The only limitation is the amount of
RAM memory that is available for Columbus. The size of a graphic in memory varies

Figure 3.6: The main window of Columbus 2.
The Graphic User Interface (GUI) is created with the X Windows Motif Toolkit.

Chapter 3 The new version of Columbus 36

from about 10 kbyte for a one parameter histogram up to about 3 Mbyte for a two
parameter scatterplot.

3.8 Suggestions for future work
A part of the design has not yet been implemented. A list of suggestions for future work
is given below:
• Monitoring histogram mode data has to be added to the monitoring module, in

addition to monitoring list mode data. This will require an expansion of the input
routines that retrieve the data from the files. These input routines will have to
support both list mode data files and histogram mode data files. Only minor changes
have to be made to the routines for drawing graphics and to the data base module.
When histogram mode monitoring has been implemented, Columbus can be used to
monitor histogram mode data from for example channeling experiments.

• List mode monitoring has to be expanded with an equation interpreter that will
process user defined equations of experiment parameters into derived parameters.
This is needed for e.g. microbeam experiments where the PIN parameter from the
scan pattern generator has to be converted into a horizontal and vertical position co-
ordinate for creating distribution plots.
In a time-of-flight experiment, the energy and flight time of a particle are measured
as experiment parameters and the mass of the particle can be derived from these
experiment parameters.
The data base model has to be expanded with an entity for storing the equations.
Experiment parameters that are used in an equation have to be coincident to allow
calculation of a derived parameter for every event. Therefore the equation entity has
to refer to a module entity, to know what parameters are available. A cross-
reference entity may be needed for keeping track of the parameters that are used in
an equation.

• Although it is possible to store graphics to disk (either as a bitmap or as raw ASCII
data), it is not yet possible to reload a graphic in Columbus. A general file format for
storing Columbus graphics has to be designed and an input routine has to be
implemented that can retrieve the graphic files. Other applications, that may have
processed or generated graphics, can store their output in the Columbus graphic
format and Columbus can be used to display the graphics.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 37

Chapter 4
Application:
Multi-Parameter Pulse Shape Discrimination

Scattering experiments using the Elastic Recoil Detection Analysis with Pulse Shape
Discrimination (ERDA-PSD) technique were performed to show the increased
possibilities of the multi-parameter data-acquisition system compared to the
conventional single parameter data-acquisition. In section 4.1 the theory of Elastic Recoil
Detection Analysis is discussed, followed by the Pulse Shape Discrimination theory in
section 4.2. In section 4.3 the electronics that was used in the set-up is described. Pulse
rise-time discrimination measurements and improvements are discussed in section 4.4
and section 4.5. The same is done for pulse height measurements in sections 4.6 and 4.7.
Some general improvements are discussed in section 4.8 followed by encountered
problems and effects in section 4.9.

4.1 ERDA theory
Section 4.4.1 describes the kinematics of a binary collision. In section 4.1.2 the energy
loss of ions moving through matter is discussed. In section 4.1.3 the probability of an
ion to be scattered into a certain solid angle is discussed.

4.1.1 Binary collision kinematics
The kinematics of a binary collision between an incoming projectile and a target atom at
rest can be derived from the laws of energy and momentum conservation. A difference
has to be made between elastic and inelastic collisions. During an inelastic collision an
amount of energy Q is transferred from the projectile nucleus to the target nucleus.
This amount is defined to be positive and can be set to zero for elastic collisions.
Figure 4.1 shows the laboratory frame geometry of a binary collision between an
incoming projectile with mass m1 and initial energy E0 and a target atom at rest with
mass m2. After the collision the projectile scatters into an angle θ with energy E1. The
target atom recoils into an angle ϕ with energy E2. The mass ratio µ is defined as µ =
m2/m1.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 38

The energy of both the scattered projectile and the recoiled particle after the collision
can be calculated with the kinematic relations that are given below [DIJ92].
In equation 4.1 the kinematic factor Kscat for a scattered projectile is defined.

2

2

0

2

0

1

1

sin
1

1cos

+

−

 +−+
=≡

µ

θ
µ

µµθ
E

Q

E

E
Kscat

(4.1)

A second solution exists when 1
1

1sin
0

22 <

 +−<
µ

µµθ
E

Q
:

2

2

0

2

0

1

1

sin
1

1cos

+

−

 +−−
=≡

µ

θ
µ

µµθ
E

Q

E

E
Kscat

(4.2)

The kinematic factor Krec for the recoiled particle is defined in equation 4.3.

()
() 2

2
0

2
2

0

2

cos

1
11cos

1

 +−±
+

=≡
ϕµ

µϕ
µ

µ
E

Q

E

E
Krec

(4.3)

From energy conservation follows relation 4.4 between Krec and Kscat:

K K
Q
Erec scat= − −1

0

(4.4)

4.1.2 Stopping power
The energy of the scattered projectiles and recoils does not solely depend on the
kinematics of the scattering process. When particles move through matter they lose

m1,E0

m2

,E1m1

m2 ,E2

ϕ

θ

Before After

Figure 4.1: The laboratory frame geometry of a binary
collision

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 39

energy because of interaction with the electrons and atoms they encounter. This effect
is called (electronic and nuclear) stopping. The stopping power, or specific energy loss, is
defined as the differential energy loss divided by the differential path length:

−≡

x

E
S

d

d
(4.5)

A stopping power curve shows the stopping as a function of the energy of the moving
particles and a Bragg curve shows the stopping as a function of the depth of a moving
particle. Examples of these curves are given in figure 4.2.

Stopping by interaction with electrons dominates if the particle velocity is large
compared to the orbital velocity of the electrons in the absorbing atoms. Electronic
stopping decreases with increasing velocity. This can be understood by noting that at
higher velocities the particle spends less time in the vicinity of any electron and less
energy is transferred. Electronic stopping roughly varies inversely with the particle
energy. Furthermore, the stopping varies with the mass of the moving particle and the
square of its charge. Particles with the greatest charge and mass will have the largest
specific energy loss.
At low particle velocities, nuclear stopping through interaction of the moving ion with
the target atoms as a whole dominates. In this velocity region, below the stopping power
maximum, stopping is proportional to the particle velocity.
The Bragg curve shows that high energetic particles deposit most of their energy at the
end of their track through matter.
The energy E(d) of a particle with an initial energy E(0) that moves through matter over
a distance d can be calculated with equation 4.6: [FEL86]

() () ()()∫−=
d

xxESEdE
0

d0 (4.6)

If the stopping power is fairly constant over the path length d, the integral in equation
4.6 can be approximated by S⋅d, where S is evaluated at some average energy between
E(0) and E(d).

Figure 4.2: Stopping power as a function of energy for alphas in Si (left) and stopping power as a
function of depth for 11.0 MeV alphas in Si (right).

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 40

4.1.3 Cross sections
The number of target atoms per unit area, Ns, determines the probability of a collision
between the incident particles and the target atoms. This probability is measured by
the total number is detected particles Qd for a given number Q of incident particles.
The connection between Ns and Qd is given by the scattering cross section.
The differential recoiling cross section [dσ/dΩ]rec, of a target atom to recoil into a
differential solid angle dΩ centered about ϕ is given by equation 4.7. [FEL86]

()
particlesincident ofnumber Total

d into scattered particles ofNumber
d

d

d Ω=⋅Ω⋅
Ω sN
ϕσ

(4.7)

When the detector solid angle Ω is small (<10-2 sr), the scattering cross section σ(ϕ) can
be defined as:

() Ω⋅
ΩΩ

= ∫
Ω

d
d

d1 σϕσ (4.8)

An approximation for the solid angle Ω of a (small) detector is given by Ω=A⋅l-2 [sr],
where A [m2] is the area of the detector and l [m] the distance at which the detector is
located.
The number Ns of target atoms per cm2 is related to the yield of detected particles by:

() sd NQQY ⋅⋅Ω⋅== ϕσ (4.9)

When the interaction between the projectile and the target atom is only through
Coulomb forces, the differential recoiling cross section [dσ/dΩ]rec can be calculated with
the Rutherford formula for recoils (given in the laboratory frame of reference) [JAE94]:

ϕµ
µ

πε
σ

3

22

0

2
21

cos

11

8d

d

 +

=

Ω E

eZZ

rec

(4.10)

where Z1 and Z2 are the nuclear charges of the projectile and the target atom,
respectively, and where E is the energy of the projectile.
For higher projectile energies the repulsive Coulomb barrier is overcome and nuclear
interactions become important. The cross section then deviates from the Rutherford
value and depends strongly on both energy and angle. The energy Enr above which this
deviation occurs can be estimated with equation 4.11 in which the energy is calculated
for which the distance of closest approach is comparable to the nuclear radius of the
target atom.

E
Z Z e
R Anr = 1 2

2

0
1 3 (4.11)

with Z1 and Z2 the atomic numbers of the projectile and the target atom, respectively, A
the mass number of the target atom and a characteristic radius R0 ≅1.4×10-13 cm.

4.2 PSD theory
Essential for ERDA is the discrimination between scattered projectiles and recoils. For
this, one can use the difference in stopping power between scattered particles and
recoils. The range of alpha particles is much larger than the range of recoils (like

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 41

carbon, oxygen and nitrogen ions) with the same energy. The range of 8 MeV alphas in
Si is 48 µm and the range of carbon recoils with the same energy is about 7 µm. An
extremely thin detector can be used to separate the long range particles from the short
range recoils. Thin detectors are, however, expensive because they need special
fabrication processes.
Instead, a low resistivity Si semi-conductor detector at low bias can be used. The
thickness δ of the depletion layer (in µm) can be calculated using equation 4.12 [RIJ93]:

δ ρ≈ +0 56 0 6. (.)Vb (4.12)

where ρ is the bulk resistivity (in Ωcm) and Vb the applied external bias voltage (in
Volts). For a detector with ρ=500 Ωcm and no external bias voltage the thickness of the
depletion layer will be about 10 µm. This thickness may be increased by applying an
external bias voltage.
A depletion layer thickness of 10-20 µm is large enough to stop all recoils (when using
the current cyclotron). The charge carriers that the recoils liberate within the depletion
layer are collected quickly and the charge collection times are in the order of
nanoseconds [RIJ93]. These times can be neglected compared to the electronic rise
times in our set-up.
Alpha particles on the other hand, pass through the depletion layer and are stopped in
the neutral zone behind the depletion layer. They will only deposit a part of their energy
within the depletion layer and the rest is used to liberate charge carriers behind the
depletion layer. In addition to the fast collection of charge carriers from within the
depletion layer, a part of the charge carriers in the neutral zone will be collected by the
process of diffusion. Charge collection from layers just behind the depletion layer is also
fast, thus increasing the effective depletion layer thickness with a few µm [RIJ93], but
charge collection by diffusion from deeper layers is rather slow. This adds a slow
component to the output pulse of the detector and decreases the rise time of this pulse.
By analysing the rise-time of the detector charge pulse, a particle that produces a pulse
with a slow component (long range alpha particles) can be discriminated from particles
that give a fast pulse (recoils and slow alpha particles). This technique is called Pulse
Shape Discrimination (PSD).
Of course, in addition to the rise-time analysis of the detector charge pulse for
discrimination purposes, the pulse height has to be analysed for the actual energy
measurements. This leads to an ambiguity, because fast timing measurements require
a high pulse slope-to-noise ratio, which is obtained if the time constant of a pulse
shaping circuit is equal to the charge collection time, whereas energy measurements
require a high pulse height-to-noise ratio, which is realized by a pulse shaping circuit
with time constants of about 1 µs.
The ambiguity can be resolved by using a pre-amplifier unit containing both a fast
voltage sensitive amplifier and a charge sensitive amplifier. A detector voltage pulse
with a rise time tc that appears at the input of the pre-amplifier, will first cause an
output pulse at the timing output from the fast voltage sensitive amplifier with a rise
time that is comparable to tc. At the energy output of the charge sensitive amplifier an

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 42

output pulse follows with a rise time that is generally much larger than tc and
proportional to the detector capacity Cd [RIJ93].
The energy output signal from the pre-amplifier is amplified and shaped by a main
amplifier to increase to signal-to-noise ratio and to obtain a pulse with a shape that is
suitable for further processing. (See e.g. [KNO79]).
The fast timing output and the energy output are connected to an additional electronic
circuit. In conventional pulse shape discrimination, the electronic circuit is used for
both analysis and discrimination. Only an alpha-suppressed energy spectrum is
recorded [RIJ93].
Instead, for multi parameter PSD, an electronic circuit is used that only analyses the
fast timing output and the energy output and that gives a number of output signals that
contain information about the energy of the particle and the rise-time of the detector
output pulse. The exact composition this electronic circuit is given in section 4.3.
Discrimination is now done by a multi parameter data-acquisition system, that records
all output signals and allows a discrimination between the alphas and the recoils that
may be more flexible and accurate than discrimination by an electronic circuit.
Two ways of pulse shape analysis that will allow discrimination with a multi parameter
data-acquisition system are discussed: section 4.2.1 describes pulse rise-time analysis
and section 4.2.2 describes pulse height analysis.

4.2.1 Pulse rise-time analysis
The energy output of the charge sensitive pre-amplifier is amplified by a main
amplifier. The amplifier contains two shaping filters. One is a CR-RC shaping filter
which is a combination of a differentiator and an integrator with an equal time constant
τE=RC. With this filter, a unipolar pulse is obtained that is used for energy
measurement. Furthermore, a CR-RC-CR shaping filter, with an extra differentiator,
gives a bipolar output pulse with a zero-crossing.
Both the rise-time of the unipolar output pulse and the zero-crossing time of the bipolar
pulse depend on the speed of charge collection in the detector, and thus on the rise-time
of the detector charge pulse.
Rise times of detector pulses from recoils and short range alpha particles are equal and
the corresponding bipolar pulses cross zero at the same time. However, bipolar pulses
from alpha particles that are stopped behind the depletion layer and for which the
charge collection is slow due to diffusion processes, cross zero at later times.
Differences in zero-crossing times are used to discriminate between the short-range
particles and the long-range particles.

4.2.2 Pulse height analysis
If shaping times of shaping circuits become comparable with the rise time of the pulse
from the pre-amplifier, its pulse shape is no longer a step function input to the shaping
filter and some pulse height is lost. This loss is called the ballistic deficit [KNO79] and
this is usually avoided by keeping the time constants long compared to the rise time of
the input pulse that is to be shaped (Not too long, because this will increase pile-up!).

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 43

This effect can, however, be used to discriminate between fast and slow preamplifier
pulses; the energy output from the pre-amplifier is split up and connected to two (or
more) main amplifiers with unipolar shaping filters that have different shaping time
constants τE1, τE2 etc. ranging from a few µs to less than a µs. These time constants are
large compared to the rise time of fast preamplifier pulses from short range particles,
like recoils. For these fast pulses no ballistic deficit occurs and the pulse heights will
correspond to the particles energy.
Rise times of slow pulses from long range particles, however, are comparable to the
time constants and a ballistic deficit occurs. This deficit differs for each shaping time.
With a multi-parameter data-acquisition system, this pulse shape dependant response
of the shaping filters can be used to discriminate between the fast and the slow detector
output pulses of the recoils and projectiles, respectively.

4.3 Experiment set-up
A Passivated Implanted Silicon Planar (PIPS) detector with a bulk resistivity ρ = 500 Ω
cm and good timing properties is used as the ERDA-PSD detector. A 1 mm vertical slit
was placed in front of the ERDA-PSD detector to reduce the angular range and thus the
kinematic spread of the detected particles.
An extra detector was positioned at a backward angle to monitor the beam current.
Section 4.3.1 describes the electronics used for the PSD analysis. Section 4.3.2 describes
the electronics for the monitor signal.

4.3.1 The PSD electronics
The ERDA-PSD detector is connected to an electronic circuit that will allow both pulse
height analysis and pulse rise-time analysis. The output signals (parameters) of the
PSD electronic circuit are connected to the multi-parameter data-acquisition system. In
figure 4.3 an overview of the PSD electronics is shown.

The ERDA-PSD detector is connected to a pre-amplifier (PA#1, Silena Catsa 82). The
energy output of this pre-amplifier is connected to two main-amplifiers (MA#1,

PA#1

FA

MA#1

MA#2

CFD

PSA

LGS#2

LGS#3

TAC LGS#1

INV SCA LGS#4 LI

MCA 1.1

MCA 1.2

MCA 2.1

MCA 2.2

ERDA-PSD
detector pulse E

t

uni

uni

bi

B

neg

valid stop

triggers

out
τ1

τ2

Figure 4.3: An overview of the Pulse Shape Discrimination electronics.
(PA = Pre-amplifier, MA = main amplifier, FA = fast amplifier,

CFD = constant fraction discriminator, PSA = pulse shape analyser,
TAC = time-to-amplitude converter, INV = inverter,

SCA = single channel analyser, LGS = linear gate stretcher,
LI = linear interface, MCA = multi channel analyser)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 44

Canberra 2020 and MA#2, Ortec 572) with different shaping times τ1 and τ2,
respectively. Typical values are τ1=0.25 µs and τ2=1.0 µs. The unipolar output of each
main amplifier is connected to a stretcher (LGS#2 and LGS#3, respectively) of which
the output is connected to the ADC input of a MCA (MCA 1.2 and MCA 2.1,
respectively). These are the two energy parameters Eτ1 and Eτ2.
In addition to the energy output, the pre-amplifier (PA#1) has a fast timing output; the
pulse from that output is amplified by a fast amplifier (FA, Ortec VT120) and led to a
constant fraction discriminator (CFD, Canberra 2126) that will generate a logic
negative output pulse whenever the height of the input signal is at a constant fraction
of its maximum. This output pulse is used as the start pulse for the time-to-amplitude
converter (TAC, Canberra 2145) that converts the time difference between a start signal
pulse and a stop signal pulse into a pulse with a height that corresponds to the time
difference.
The bipolar output of main-amplifier MA#1 is connected to the pulse shape analyser
(PSA, Ortec 552) that will generate a pulse on the zero crossing of the input signal. This
pulse is used as the stop pulse for the TAC. The TAC output signal is connected via a
stretcher (LGS#1) to the ADC of MCA 1.1. This is the timing parameter t.
The ADCs of the MCA boards each need a trigger pulse that is created as follows. The
TAC valid stop gate output signal is inverted using an inverter unit (INV, Ortec 433A).
This inverter is connected to a single channel analyser (SCA, Ortec 550A) that is used
to generate a trigger pulse for every inverted gate signal. The trigger signal is split up
with a linear interface (LI) and is connected to the ADC trigger inputs of the MCA 1.1,
1.2 and 2.1.
The stretchers are used to stretch and delay all signals so they arrive at the same time
at the ADCs. Thus only one trigger signal has to be created for all three coincident
parameters (the timing parameter and the two energy parameters). The discrimination
level of the stretchers should be sufficiently high to avoid ’noise stretching’ instead of
stretching the real signals.
By using one trigger for the three coincident signals, a coincidence is faked. New
hardware is being developed that will allow real coincidence measurements. These new
peak detector units will generate a trigger signal for each individual parameter.
Whether signals are truly coincident will then be determined by a gate signal that is
connected to each MCA. If the triggers for all coincident parameters fall within the gate
signal the coincidence will be judged valid.

4.3.2 The monitor signal electronics

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 45

The monitor detector signal is amplified using a second pre-amplifier (PA#2, Silena
Catsa 82) and a main-amplifier (MA#3, Ortec 572) of which the unipolar and bipolar
output signals are connected to a peak detector unit (PD) that will generate a trigger for
the ADC of MCA 3.1 on the maximum of the unipolar signal. Of course, this unipolar
signal is also connected to the signal input of MCA 3.1.

4.4 Pulse rise-time discrimination measurements

4.4.1 A thin carbon foil
A thin carbon foil (10 µg/cm2) was bombarded with 13.4 MeV alpha particles at normal
incidence (ψ=90°) and the recoils and scattered alphas were detected with the ERDA-
PSD detector, operated at 1.0 V bias and located at an angle of ϕ=30°.
Figure 4.5 shows the timing vs. energy (E/t) scatterplot that was obtained by monitoring
the list mode data with Columbus and plotting the timing parameter vs. one of the
energy parameters.

PA#2 MA#3

MCA 3.1

MCA 3.2

PD
monitor

det. pulse
E uni

bi

trigger

Figure 4.4: An overview of the monitor signal electronics.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 46

The energy parameter E1 (shaping time τE1 equal to 0.25 µs) is plotted along the
horizontal axis and the timing parameter t (shaping time τt equal to 0.25 µs) along the
vertical axis. Units are in channels; Columbus will soon support axis calibrations.
Particles that are stopped in the depletion layer, like the recoils, all have the same fast
timing. Only their energy differs, so they will fall on a straight line in the E/t
scatterplot. The elastic carbon recoils (C, 7.5 MeV), the inelastic carbon recoils (C*, 5.0
MeV) and some elastic oxygen recoils (O, 6.4 MeV) due to surface contamination, indeed
appear on this straight line. Although the surface contamination is small, it is visible
because the cross section for oxygen recoils has a maximum at 30 degrees for the beam
energy of 13.4 MeV [IJZ93].
Alpha particles that are scattered on carbon are stopped beyond the depletion layer and
give a slower timing signal. Elastically scattered alphas on carbon (αC, 12.2 MeV) and
inelastically scattered alphas on carbon (αC

*, 7.8 MeV) indeed display a larger timing
signal and appear separated from the recoils. Notice that the alphas appear with a
lower energy value than the recoils and that the measured energy of the elastic alphas

Figure 4.5: Timing vs. energy scatterplot of a 10 µg/cm2 carbon foil.
 (ϕ=30°, ψ=90°, E0=13.4 MeV, Vb=1.0V, τt=0.25 µs, τE1=0.25 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 47

on carbon is lower than for the inelastic alphas on carbon. This is caused through
charge collection that is slow or even incomplete. This will be discussed further in
section 4.4.3.
A background of scattered alphas (indicated by αbg) with all kinds of energies is also
visible. (The cause of this background is discussed in section 4.9.1).
The contents of the scatterplot can be projected on both axes into histograms. This is
done in figure 4.6 for the timing axis and in figure 4.7 for the energy axis.
As can be seen in figure 4.6 the timing peaks from the alphas appear separated from
the recoil timing peak. In conventional PSD experiments, a single channel analyser is
used to select the events with a timing signal within a region around the recoil timing
peak.

Figure 4.6: Timing axis projection of the scatterplot in figure 4.5.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 48

The disadvantage of this method is that rejected events are thrown away and if the
region is not selected correctly, the experiment has to be repeated with another region
selection. For other samples, e.g. thicker or mounted differently in the target holder, the
locations of the timing peaks may shift or broaden which also results in an improper
discrimination.

Figure 4.7: Energy axis projection of the scatterplot in figure 4.5.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 49

With a multi-parameter data-acquisition system the discrimination can be repeated
over and over. Data from all events is recorded and displayed in scatterplots like figure
4.5 or in histograms. From the timing parameter histogram a the region of interest that
encloses the recoil events can be determined. Then an energy histogram can be
generated, applying the determined conditions on the timing parameter.
An even more powerful tool is the possibility to select all recoil events by drawing a
contour in the E/t scatterplot around the recoil contributions. The contents of this
contour can be projected onto the energy axis and the result is a alpha-suppressed
energy histogram, as shown in figure 4.8.
A ’clean’ energy spectrum of the recoils without an alpha background is obtained.
Energy spectra of thin carbon foils are used for energy calibration of the detector when
the beam energy and the detection angle are known. On the other hand, measurements
of energy spectra like these at several detection angles can be used to determine the
beam energy and the deviation of actual the beam entrance angle from the expected
entrance angle, by fitting the measured spectra with the kinematic relations.

Figure 4.8: The energy histogram resulting from the projection of
the contents of a contour enclosing the recoil contributions of the

scatterplot 4.5 onto the energy axis.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 50

4.4.2 A Mylar foil
A mylar foil contains, in addition to carbon, also oxygen and hydrogen. Figure 4.9 shows
the E/t scatterplot of a mylar foil that was bombarded with 13.4 MeV alphas at normal
incidence. The detection angle was 30 degrees.
The oxygen alphas are now more visible in the scatterplot. Because this Mylar foil
(thickness about 4.2 µm) is thicker than the carbon foil the peaks are broadened and
start to overlap for the recoils. This can also be seen in figure 4.10, where the
corresponding alpha suppressed energy histogram is shown (only contribution to the
recoil line in figure 4.9 were used to create the histogram).

Figure 4.9: The E/t scatterplot of a Mylar foil
(ϕ=30°, ψ=90°, E0=13.4 MeV, Vb=1.0V, τt=0.25 µs, τE=0.25 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 51

4.4.3 A Si2O3N layer on a Si substrate
As an example of a thick sample, the measurement on a 80 nm Si2O3N layer deposited
on a Si substrate is discussed. Figure 4.11 shows the E/t scatterplot.
The recoils of course appear on the straight line: some elastic carbon recoils (C, 7.5
MeV) due to contamination and many oxygen recoils (O, 6.4 MeV) are clearly visible.
The contributions from nitrogen recoils (N, 6.95 MeV) and the inelastic carbon recoils
(C*, 5.0 MeV) are less visible. The cross-section for nitrogen is low for this angle and
energy. [IJZ93]. To see more nitrogen, one should measure at another angle or energy
where the cross section of nitrogen is large compared to the cross-section of oxygen.
When bombarding a thick sample, alphas are detected with a wide range of energies
corresponding to all kinds of depths at which they were scattered. This range of alpha
energies is visible as an ’alpha curve’ in the E/t scatterplot.

Figure 4.10: Energy histogram of the recoils from fig. 4.9

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 52

Low energetic, short range alpha particles (αlow energetic) have fast timing signals
because they are stopped within the depletion layer or just behind it. Their timing
signals are comparable to the recoil timing signals and they form the low energetic tail
of the alpha curve.
Alpha particles with an energy comparable to the recoil energies (αmedium energetic) are
stopped in the region behind the depletion layer and the energy that they deposit will be
collected slower. Their timing signal is thus larger and in the E/t scatterplot they
appear above the recoil line.
High energetic alpha particles (αhigh energetic) deposit most of their energy far behind
the depletion layer (see the Bragg curve in section 4.1.2) and their timing signals are
even slower. The measured energy does not increase anymore, but even decreases for
these high energetic alphas. This effect is the ballistic deficit, as discussed in section
4.2.2; because the charge collection is too slow, or even incomplete when the charge is
deposited beyond the region from which charge is effectively collected by diffusion, not

Figure 4.11: The E/t scatterplot of a Si2O3N layer on a Si substrate.
(ϕ=30°, ψ=15°, E0=13.4 MeV, Vb=1.0V, τt=0.25 µs, τE=0.25 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 53

all deposited charge will contribute to the pulse height that is recorded. This effect
causes the alpha curve to fold back in the E/t scatterplot.
Both the undiscriminated and discriminated energy histograms for this sample are
shown in figures 4.12 and 4.13, respectively. In the undiscriminated spectrum the
alphas form a large ’fold back’ peak and obscure the recoil contributions.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 54

When the alphas are suppressed by selecting the recoils in the scatterplot, the
discriminated, alpha suppressed, energy histogram is obtained in which the recoil
contributions are clearly visible. The background from alphas is gone and the pile up
background is strongly reduced.

Figure 4.12: The undiscriminated energy histogram projection of
figure 4.11

Figure 4.13: The discriminated energy histogram projection of
figure 4.11

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 55

4.5 Optimizing the pulse rise-time discrimination
The measurements that were discussed in the previous section were performed with a
pulse rise-time discrimination circuit that was optimized to obtain both a maximum
separation between the recoils and the alphas in the E/t scatterplot for a accurate
discrimination and a maximum energy resolution. Several combinations of the shaping
time for the timing signal, the shaping time for the energy signal and the detector bias
voltage were used.
An indication for the level of discrimination is the alpha suppression energy which is
defined as the maximum energy down to which the alphas can be suppressed reliably.
Alphas below this energy have timing signals comparable to recoil timing signals and
separation can no longer be based on timing differences. The alpha suppression energy
is thus the energy down to which the recoils can be reliably separated from the alphas.
A reduction of the alpha suppression energy means an improvement in discrimination.

4.5.1 Different shaping times for the timing parameter
Measurements have been carried out with different values for the shaping time τt of the
timing parameter (50 ns, 100 ns, 250 ns and 500 ns). The effect of a change in τt on the
alpha suppression energy is not observed. More measurements are needed to compare
the separation and timing resolution for various timing shaping constants.
In further experiments, we used the Ortec 2020 amplifier with the time constant for the
bipolar shaping filter equal to 0.25 µs,

4.5.2 Different shaping times for the energy parameter
The shaping time for the energy parameter was also varied to obtain maximum
discrimination and optimal energy resolution. Measurement were performed using an
energy shaping time τE equal to 100 ns, 250 ns, 500 ns, 1000 ns and 2000 ns. The
detector bias voltage was 1.0 V, the detection angle ϕ was 30 degrees and τt was 0.25 µs.
To show the effect of a change in the energy shaping time, figure 4.14 shows the E/t
scatterplot of a 80 nm Si2O3N on a Si substrate measured with τE=1000 ns. It can be
compared to fig 4.11 where τE=250 ns. All other conditions were the same.
At higher energy shaping times the alpha curve folds back less, which results in a worse
separation between the alpha curve and the recoils. Also, the amount of pile-up
increases with a larger shaping time and the recoil contributions are obscured by a
background of pile-up.
On the other hand, τE should not be taken too small, because if it becomes comparable
to the rise time of the recoil energy pulses from the preamplifier, recoil pulse height loss
occurs and the energy resolution may become worse.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 56

The total energy resolution for recoils is determined by the beam energy spread,
kinematic spread due to angular beam divergence and detection angle spread, the
detector energy resolution and finally the energy resolution of the electronics (noise).
When the kinematic spread is reduced by using sufficiently narrow slits, the fluctuation
in the energy of the recoils that is available for electron/hole production is the detector
is more important than all other contributions and the influence of a change in the
energy shaping time, thus in the energy resolution of the electronics, on the total energy
resolution for recoils will be small.
If the time constant τE is set to 0.25 µs, the separation between the recoils and the
alpha curve is sufficient to discriminate reliably, while the amount of pile-up is strongly
reduced. Because the energy shaping time and the timing shaping time are now taken
equal we can use one shaping amplifier for both signals. The unipolar shaping output is
used for the energy signal and the bipolar shaping output is used for the timing signal.
(MA #1 in figure 4.3). This is a simplification of the electronic pulse rise-time analysis
circuit.

Figure 4.14: The E/t scatterplot of a Si2O3N layer on a Si substrate.
(ϕ=30°, ψ=15°, E0=13.4 MeV, Vb=1.0V, τt=0.25 µs, τE=1.0 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 57

Dependance of the energy response on the energy shaping time can also be used to
discriminate between recoils and alphas. This is done with pulse height discrimination
measurements which are discussed in section 4.6.

4.5.3 Different detector bias voltages
The effect of a change in the detector bias voltage was also studied. Measurements were
performed with a bias voltage Vb=0.5V, 1.0V, 2.0V, 2.6V and 4.0V. The detection angle
was 30 degrees, τt=0.25 µs and τE=1.0 µs. Figures 4.15 and 4.16 show the E/t
scatterplots that correspond to Vb=0.5V and 2.6V, respectively.
Decreasing the bias voltage decreases the depletion layer thickness and the rise time of
long range alphas increases. A decrease of the detector bias voltage also causes the
alpha curve to fold back further, and the separation between the alphas and the recoils
will become better.

Figure 4.15: The E/t scatterplot of a carbon foil, measured with Vb=0.5V
(ϕ=30°, τt=0.25 µs, τE=1.0 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 58

At low bias voltages, however, the detector capacity increases strongly [RIJ93] which
results in an increase of the rise time of the energy output of the preamplifier and a
decrease of the signal-to-noise ratio. The amplification of the preamplifier may even
become instable at very high detector capacities (this is discussed in section 4.9.2).
A bias voltage of 1.0V was chosen to keep the detector capacity fairly small, while
separation is sufficiently optimized.

4.5.4 An alternative timing circuit
In conventional pulse rise time analysis the start signal for the time-to-amplitude
converter is taken from the fast timing circuit while the stop signal comes from the
pulse-shape-analyser (PSA) output that gives a fast pulse on the zero crossing of the
bipolar energy pulse. This is the so-called B-output of the PSA.
The PSA has a second output, the A-output, that gives a pulse when the down going
flank of the bipolar pulse has lost a certain fraction (10%-90%) of its maximum.
Instead of taking the start signal from the fast timing circuit, this A-output pulse from
the PSA can be used. Timing differences will be smaller, because only a fraction of the

Figure 4.16: The E/t scatterplot of a carbon foil, measured with Vb=2.6V
(ϕ=30°, τt=0.25 µs, τE=1.0 µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 59

rise time of the shaped preamplifier pulse is taken into account. But separation
between fast and slow pulses remains possible.
Figures 4.17 and 4.18 show the E/t scatterplots of a 390 nm amorphous C layer on a Si
substrate, measured with the TAC start signal taken from the fast timing circuit
(conventional) and from the PSA A-output (alternative), respectively. These plots show
that for both timing methods carbon can be profiled down to a depth of at least 400 nm,
because the carbon recoil contribution appears completely separated from the alpha
curve. The large amount of pile-up is cause by a high detector count rate. This can be
reduced by a reduction of the beam current.
The depth resolution for both methods is the same. In these measurements, the surface
depth resolution for oxygen is 40 nm and the depth resolution at the interface is 50 nm,
which is slightly larger due to multiple scattering and energy straggling of the recoils.
The main advantage of the alternative rise time analysis circuit is the simplicity; no
fast timing circuit is needed and the fast amplifier and the constant fraction
discriminator can be done without.

Figure 4.17: The E/t scatterplot of a 390 nm C layer on a Si substrate, measured with the
conventional timing circuit. (Vb=1.0V, ϕ=30°, ψ=15°, τE=τt=0.25µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 60

4.5.5 Different detection angles
A detector with a thin depletion layer only separates recoils from scattered alpha
particles, but does not separate the different recoils from one another. The mass/depth
ambiguity can be removed by changing the beam energy and/or the detection angle.
This will alter the cross section ratio of different detected recoil masses. Cross section
resonances can be used to enhance the sensitivity for a nuclide of interest.
For oxygen a broad resonance at 13.4 MeV is found at 30 degrees. For carbon a similar
cross section maximum is found at 12.1 MeV, also at 30 degrees. Nitrogen has a cross
section maximum at 13.4 MeV at a detection angle of 37 degrees.
Small detection angles are also advantageous: the recoil energy spread is proportional
to dKrec/dϕ ∼ sin(2ϕ) and the depth resolution is thus enhanced for small angles.
Furthermore, the recoil mass separation, which is proportional to dKrec/dm2 ∼ cos2(ϕ) is
optimal at small angles. Finally, very large cross section resonances exist at small recoil
detection angles.

Figure 4.18: The E/t scatterplot of a 390 nm C layer on a Si substrate, measured with the
alternative timing circuit. (Vb=1.0V, ϕ=30°, ψ=15°, τE=τt=0.25µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 61

Figure 4.19 shows the E/t scatterplot of a measurement of a carbon foil that was
bombarded with 13.4 MeV alphas at normal incidence. The detection angle was 15
degrees.

In this measurement both inelastic oxygen and double inelastic carbon recoils appear
separated from the alpha tail. A background of alphas of slitscattered alphas that hit
the detector directly is also visible (see also section 4.9.1).
Unfortunately, detection at small angles (smaller than 30 degrees) leads to practical
problems if the experiment is done with a reflection geometry. A these small detection
angles, for which the entrance angle and the exit angle are also small, the lateral
spread (due to path length differences, caused by multiple scattering) is increased,
extremely flat samples are required and the beam spot size on the sample has to be
minimized. First of all, the target mounting device should be redesigned, because the
current design is not fit for small detection angles in reflection geometry.

Figure 4.19: The E/t scatterplot of a carbon foil detected at ϕ=15 degrees. Notice that inelastic
oxygen recoils are visible. (Vb=1.0V, E0=13.4 MeV, ϕ=15°, ψ=90°, τE=τt=0.25µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 62

4.6 Pulse height discrimination measurements
As indicated in section 4.5.2 discrimination can also be based on the dependance of the
energy response to the energy shaping time. This is demonstrated by a measurement on
a carbon foil and a measurement on a thick sample.

4.6.1 A thin carbon foil
Instead of drawing an E/t scatterplot of the timing parameter and one of the energy
parameters, the two energy parameters with different shaping times τE1 and τE2 can
also be plotted versus each other in a scatterplot. Such an E1/E2 scatterplot is shown in
figure 4.20. It was created from the same list mode data that was used to create the E/t
scatterplot in figure 4.5.

The energy parameter Eτ1 (shaping time τE1 equal to 0.25 µs) is plotted along the
vertical axis and the energy parameter Eτ2 (shaping time τE2 equal to 1.0 µs) is plotted
along the horizontal axis. Units are still in channels.

Figure 4.20: The E1/E2 scatterplot of a carbon foil. τE1=0.25µs and τE2=1.0µs
(ϕ=30°, ψ=90°, Vb=1.0V)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 63

Particles that are stopped in the depletion layer, like recoils, have a similar response to
shaping with different times constants, that are all larger than the rise time of the
energy pulses, and in the E1/E2 scatterplot they form a straight line. In figure 4.20 the
contributions from the elastic carbon recoils (C, 7.5 MeV), the inelastic carbon recoils
(C*, 5.0 MeV) and the elastic oxygen recoils (O, 6.4 MeV) indeed form a straight line.
Alphas scattered on carbon are stopped beyond the depletion layer and because their
detector output pulse is slow, they suffer some pulse height loss. The magnitude of this
ballistic deficit is a function of the shaping time. Pulse height loss is larger for shorter
shaping times. This results in a deviation from the straight recoil line. The alphas that
scattered elastically on carbon (indicated by αC) and the alphas that scattered
inelastically on carbon (αC

*) do indeed appear separated from the recoil line.
Again, a contour can be drawn than encloses the contributions of the recoils. Axis
projections can be created of the contents of the contour and a alpha suppressed energy
histogram, like in figure 4.8, is obtained for each energy parameter.

Figure 4.21: The E1/E2 scatterplot of a Si2O3N layer on a Si substrate.
(ϕ=30°, ψ=15°, E0=13.4 MeV, Vb=1.0V, τE1=0.25µs, τE2=1.0µs)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 64

4.6.2 A Si2O3N layer on a Si substrate
The contributions of alphas to an E1/E2 scatterplot can be seen better for a thick
sample. Figure 4.21 shows the E1/E2 scatterplot that corresponds to the E/t scatterplot
in figure 4.11.
The elastic carbon recoils (C), the oxygen recoils (O) and a few nitrogen recoils (N) again
fall on the straight recoil line.
The curve of scattered alphas, mostly on Si, folds back for high energetic alphas. As
explained in the previous section this is due to the pulse height loss that is dependent
on the shaping time constant. A pile-up background caused by a high detector count
rate is also visible.

4.7 Optimizing the pulse height discrimination

4.7.1 Variation of the energy shaping times
Different combinations of energy shaping times were used to see whether the
separation between the recoils and the alpha tail could be improved. It was found that
an increase in the ratio of the energy shaping times τE1 and τE2 improved the
separation between the alpha curve and the recoil contributions. The shaping constants
should not be too large, to reduce the amount of pile-up. If the time constants are taken
too small, pulse height loss for the recoil energy pulses occurs and the recoil
contributions will no longer form a straight line.
The combination of τE1=0.25µs and τE2=1.0 µs (and Vb=1.0V) was found to be useful for
effective pulse height discrimination and a combination with pulse rise-time analysis
(with τt=τE=0.25 µs) can then easily be accomplished.

4.8 Other improvements

4.8.1 Alpha suppression with the CFD threshold level
The constant fraction discriminator (CFD) has a threshold level that is usually used to
suppress noise pulses from the fast timing output of the preamplifier; if the target is not
bombarded with projectiles, any fast timing signals must be due to noise and these are
suppressed by increasing the threshold level just over the noise level.
The threshold level can be increased further to suppress the fast timing pulses from
both low energetic particles and long range particles. This suppression of alphas at both
ends of the alpha curve is shown in figure 4.22. Compare figure 4.22 with figure 4.11,
for which the CFD level was much smaller.
If the CFD threshold level is increased too much, recoil events are also suppressed.
Suppressing all alphas without suppressing a recoil event seems impossible and
increasing the CFD level can not be used to reliably suppress all alpha events.
It can, however, be used to suppress a part of the alphas and thus reduce the amount of
events that has to be processed by the multi-parameter data-acquisition system. The
amount of data is reduced and list mode data can be processed quicker.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 65

A suggestion for future experiments is to include the fast timing output of the
preamplifier as an extra experiment parameter and to use the multi-parameter system
instead of the CFD threshold level to discriminate on this parameter.

4.8.2 Discrimination based on more than two parameters
With the setup that is described in section 4.3 three coincident parameters are
recorded: one timing parameter and two energy parameters. Up to now only two out of
these parameters are used to discriminate between the recoils and the alphas. A
discrimination method that is based on more than two parameters might be more
effective. This is indicated by the following example.
When the three scatterplots are drawn (the E1/t, the E2/t and the E1/E2 scatterplot)
and when in all three plots a contour is drawn that encloses the recoil contributions, a
small difference in the number of selected recoil events for each scatterplot is obtained.
This difference is among others caused by pile-up which is not the same for all three
parameters. It should be possible to reduce the pile up background by a discrimination
method that is based on more than one parameter. This might improve sensitivity.

Figure 4.22: Suppression of the alpha curve at both ends by increasing the CFD level
(Si2O3N/Si, ϕ=37°, ψ=15°, E0=13.4 MeV, Vb=1.0V, τE=1.0µs, τt=0.25µs, CFD level 80)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 66

It is not yet possible to select a contour in a scatterplot of two parameters and then
create the scatterplots of the other two combinations of parameters with only those
events that lie within the contour in the first scatterplot. An option like this would
allow flexible analysis based on more than two parameters.
It is however possible to set a condition on a parameter. It is thus, for example, possible
to set an interval for the timing parameter and then draw the scatterplot for the energy
parameters with only those events for which lies within the interval.

4.9 Encountered problems and effects

4.9.1 Slitscattering background
During measurements on a carbon foil, it was noticed that the alpha background curve
bypassed the peak from alphas that scattered inelastically on carbon. The background
alphas had a larger pulse height for the same timing signal This is illustrated in figure
4.23.

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 67

The hypothesis was that these alphas were not scattered on the target but that they
entered the detector directly from the beam guidance system, where they were
scattered on the diaphragm placed just in front of the scattering chamber. Because they
crossed the depletion layer obliquely, they deposited more of their energy within the
depletion layer. The rest of the energy was deposited closer to the depletion layer and
thus the amount of charge collected by diffusion was also larger. This explains the shift
of the alpha background curve to a larger pulse height.
The hypothesis is confirmed by a measurement without a target where only the shifted
alpha background curve remained visible, and by a measurement with a different
diaphragm which caused a change in the intensity of the background. A shield has been
installed in the target chamber to block all alphas that are scattered on the diaphragm
and this removes the background almost completely.

4.9.2 Variation in the channel to energy calibration

Figure 4.23: A E/t scatterplot of a carbon foil. The alpha background curve bypasses the peak from
the alphas that scattered inelastically on carbon.

(The slit in front of the detector was removed for this measurement)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 68

A channel to energy calibration can be made for recoils, based on the location of recoil
peaks with a known energy. The energy calibration should remain fixed during an
experiment session, if nothing is changed but the sample.
It was observed, however, that over a number of consecutive measurements (over a time
interval of several hours) the channel to energy calibration did not remain fixed. The
location of the carbon peak, for example, shifted to a lower channel. This shift was
observed for both energy parameters and was not present in the spectrum of the
monitor energy parameter. The effect is thus limited to the PSD detector and the
corresponding preamplifier. A variation of the beam energy can be excluded.
The preamplifier gain is stable as long as the detector capacity Cd is much smaller than
the input impedance A⋅Cf of the preamplifier (where A is the amplification factor of the
amplifier and Cf is the feedback capacity) [RIJ93]. However, at small bias voltages Cd
becomes large and the gain of the preamplifier might become instable and vary with A
and Cd
The detector capacity Cd may change through a change of the depletion layer thickness
of the detector. A variation in the depletion layer thickness may have two causes.
First, a change of the applied bias voltage changes the depletion layer thickness. A slow
response of the depletion layer thickness to a change in the applied bias voltage might
explain the observed variation. However, this response time, which depends on the time
constant of the bias voltage low pass filter in the preamplifier, is at most a few seconds.
A second cause might be that at high count rates the detector leakage current increases
and the effective bias voltage decreases. This also decreases the depletion layer
thickness and increases the detector capacity.
It is more likely that the observed pulse height changes are not caused by a change of
the depletion layer thickness, but by a change of the preamplifier gain which is instable
because the detector capacity Cd is high.
The amplification factor A can change if high count rates cause temperature changes or
a change in the amplifier current to compensate the DC-level when pulses are
superimposed.
A number of experiments was done to test the hypotheses that were give above. A
measurement with an AmCu alpha source, that was started immediately after the
detector bias voltage had been changed from 100V down to 1.0V, did not show a shift of
the peaks. The count rate during this experiment was low. It shows that the response of
the depletion layer thickness to a change in applied bias voltage is a matter of seconds.
Another experiment was performed to see if the count rate indeed influences the pulse
height gain. An AmCu alpha source was placed in front of the PSD detector with 1.0V
bias. The detector was connected to the detector input of the preamplifier and two pulse
generators were connected to the test input of the preamplifier, each with an output
pulse similar to a detector output pulse. One of the pulse generators produced a 50Hz
signal with a constant amplitude, the other produced pulses with a variable frequency.
An increase of the count rate of the variable pulser caused a decrease of the measured
pulse height of both the alpha source pulses and the fixed gain test pulse. This shows

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 69

that the gain of the preamplifier is indeed instable at high count rates. The same effect
was observed for another preamplifier of the same type.
As a temporary solution, the beam current was reduced during consecutive experiments
to decrease the count rate. Thus, the gain shift was avoided and the pile-up background
was reduced. For a final solution a new preamplifier is needed that can handle high
count rates in combination with a high capacity connected to its input.

4.9.3 Broadening and splitting of the alpha peaks and curve
For a number of experiments a splitting of the high energetic alpha peaks and curve
was observed; in addition to each expected peak, two extra peaks appeared with a lower
pulse height for each energy parameter. The intensity was also smaller. This is
illustrated by figure 4.24. For an E/t scatterplot the extra peaks appear with a faster
timing signal.

At first, the splitting of the high energetic alphas was considered to be due to cable
reflections in the electronic circuit. A test series in which the cable connections were

Figure 4.24: The splitting up of the alpha peaks and curve
(carbon foil, Vb=1.0V, ϕ=30°, ψ=15°, E0=13.4 MeV)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 70

varied (adding 50Ω terminators and replacing tee-splitters) did not show any
improvement.
Multiple beam energies due to an extraction problem are most unlikely: the monitor
energy parameter did not exhibit the observed effect.
However, the splitting-effect was not observed with a different detector (and the same
preamplifier). Figure 4.25 shows the measurement that was done with this other PSD
detector.

With the new detector the splitting of the alpha peaks to lower energy and faster timing
was gone, suggesting that it was caused by detector defects, like radiation damage.
These damages are located in the region beyond the depletion layer, because the
splitting is only seen for high energetic alphas, and the pulse height loss is correlated to
the shaping time.
For this detector the broadening of the alpha peaks and their tail to lower energies and
slower timing is not obscured by the splitting of the alpha curve. The broadening may

Figure 4.25: A different detector does not show the splitting of the alpha curve to lower pulse heights.
Broadening of the alpha peaks through straggling and multiple scattering appears unobscured.

(carbon foil, Vb=1.0V, ϕ=30°, ψ=15°, E0=13.4 MeV)

Chapter 4 Application: Multi Parameter Pulse Shape Discrimination 71

possibly be explained by energy straggling and multiple scattering of the alpha particles
in the detector and small variations of the depletion layer thickness over the detector
area. The tail is probably caused by ’trapping’ effects caused by parts of the detector
that are damaged by radiation and from which charge collection is slow and inefficient.

Chapter 5 Conclusions and Recommendations 72

Chapter 5
Conclusions and recommendations

5.1 The multi-parameter data-acquisition software
Software has been developed for the PhyDAS data-acquisition system to perform multi-
parameter experiments in both list mode and histogram mode. It can be used for
microbeam experiments and for ion scattering experiments. If routines are added to
control the channeling set-up, it can also be used for channeling experiments.
A specification and a design have been made for a new version of Columbus that can
both process and monitor data collected by the PhyDAS multi-parameter data-
acquisition system. The user interface and the data base were completely rewritten and
data of multi-parameter list mode experiments can be processed and monitored. The
monitoring of histogram mode experiments and an equation interpreter to process
parameters into derived parameters still have to be added. The tool to make axis
projections of the contents of a contour has to be extended, so projections can be made
onto any user-defined axis. This might also be done by a transformation and rotation of
the parameters, using the equation interpreter.

5.2 Multi-parameter Pulse Shape Discrimination
Pulse Shape Discrimination experiments have been performed with the new multi-
parameter data-acquisition system. Because experiment data is monitored properly and
because relations between parameters are clearly visible, understanding of the Pulse
Shape Discrimination technique has improved.
Separation between the alpha and the recoil contributions, which is essential in ERDA
experiments has been improved and discrimination is now more accurate. This results
in an improved sensitivity for recoils.
An alternative timing circuit has been developed. This timing circuit only uses the
energy output of the preamplifier and the fast timing circuit can be done without.
Separation between the alphas and the recoil contributions is slightly worse, but depth
resolution is not influenced.
In addition to discrimination based on pulse rise-time analysis, a second discrimination
technique was found to be useful. This discrimination is based on the analysis of the
pulse-height response of the energy pulses to shaping with different shaping constants
and is as effective as the rise-time discrimination. The electronics is simplified even
more, because the timing circuit can be done without completely.
Discrimination based on a combination of both pulse rise-time analysis and pulse height
analysis might improve separation and thus sensitivity even more.
Finally, all data that was collected during the experiments still awaits quantitative
analysis, which is now possible.

References 73

References

[ATZ92] B. Atzema
Data acquisition for microbeam analysis
Final report of the postgraduate program Software Technology, EUT, 1992

[BEU94] L. van Beurden
Channeling met hoog energetische ionenbundels
Master of Science thesis (VDF/NK 94-22), EUT, 1994

[DIJ92] P. W. L. van Dijk
Analysis of light elements in thin films using high energy ion scattering
techniques
Master of Science thesis (VDF/NK 92-02), EUT, 1992

[FEL86] L. C. Feldman, J. W. Mayer
Fundamentals of surface and thin film analysis
Elsevier Science Publishing, Amsterdam, 1986

[GER94] P. J. German
Een database voor experiment-gegevens. Database in Oracle met een
interface voor de taal C
Afstudeerverslag Elektrotechniek TCK Hogeschool Eindhoven, 1994

[IJZ93] L. J. van IJzendoorn, H. A. Rijken, S. S. Klein, M. J. A. de Voigt,
Applied Surface Science, 70/71 (1993) 58

[JAE94] L. Jaegers
Elastic recoil detection analysis with He ions. Simulations and applications
to materials analysis
Master of Science thesis (VDF/NK 94-15), EUT, 1994

[JON93] J. Jonkers
Multi-Parameter Ion Scattering Techniques
Master of Science thesis (VDF/NK 93-24), EUT, 1993

[KNO79] G. F. Knoll
Radiation detection and measurement
Wiley & Sons, New York, 1979

[RIJ93] H. A. Rijken
Detection methods for depth profiling of light elements using high energy
alpha particles
Ph.D. thesis, EUT, 1993

[SIM93] D. P. L. Simons
Ontwikkeling van de software voor het uitvoeren van histogrammode-

References 74

experimenten met de microbundelopstelling
Internal report (VDF/NK 93-30), EUT, 1993

[STR93] G. J. Strijkers
On line grafische verwerking van multi-parameter experimenten op PhyDAS
Internal report (VDF/NK 93-19), EUT, 1993

[ZWI93] C. van Zwijnsvoorde
Software ontwerp en implementatie voor metingen aan spoorelementen in de
scannende protonen microbundelopstelling.
Master of Science thesis (VDF/NK 93-03), EUT, 1993

Appendix A Changes to the CEDAS software levels 75

Appendix A
Changes to the CEDAS software levels

A.1 Changes to the routines level
Routines have been added to the routines level lvl3 for defining multi-parameter set-
ups for PhyDAS. The set-up is stored via a module definition containing the relations
between parameters, modules, MCA’s and list mode memories.

A.1.1 Variables and constants
• max_nr_of_modules = 3

The maximum number of modules that can be uses in the set-up. Restricted by the number of
MCA’s in the PhyDAS system.

• max_nr_of_mems = 6
The number of list mode memories that is available.

• max_nr_of_mcas = 3
The number of MCA interfaces that is available.

• max_mod_mca_size = max_nr_of_mcas
The maximum number of MCA’s in a module

• max_mod_mem_size = max_nr_of_mems
The maximum number of memories in a module

• max_mod_par_size = 2*max_nr_of_mems
The maximum number of parameters in a module

• nr_of_modules: nat1
The number of modules in the current module definition.

• mod_mca_size, mod_mem_size, mod_par_size: ARRAY 1..max_nr_of_modules OF nat1
The number of resp. MCA’s, memories and parameters for every module.

• mem_index, mem_mode: ARRAY 1..max_nr_of_modules, 1..max_mod_mem_size OF nat1
The index and memorie mode (16 or 32) of every memory in every module

• mca_index, mca_mode: ARRAY 1..max_nr_of_modules, 1..max_mod_mca_size OF nat1
The index and MCA mode (single or dual) of every MCA in every module.

A.1.2 Routines
• save_module_info

Saves the current module definition in a file called ubd:modXXX.ubd where XXX is the
module definitions number, as given by the user. The file contains the following data:
- the number of modules in the module definition.
- the number of memories, mcas and parameters for every module.
- the indices and memory-modes for all memories.
- the indices and MCA-modes for all MCA’s.

• load_module_info
Reads a module definition from a previously saved file (see save_module_info). The number of
the module definitions file is taken from user input.

• show_module_info
Displays an overview of the current module definition.

• change_module_info
Allows the user to change the current module definition. User input is required for:
- the number of modules..
- the number of list mode memories for every module.
- the name (or index) for every list mode memory.
- the number of parameters for every memory (one or two).
- For every memory that is connected to a MCA, the name (or index) of that MCA.

Appendix A Changes to the CEDAS software levels 76

From this data the module definition is created and displayed.
• start_mcas

This procedure is used to start all MCA’s in all defined modules at the same time. It uses the
procedure strt(mca_index[i, j]) to set the start bit of the MCA’s and then it enables all
MCA’s at once via the relais-interface.

• stop_mcas
This procedure stops all MCA’s for all defined modules at the same time. First it disables all
MCA’s via the relais-interface, and then it uses the procedure stp(mca_index[i,j]) to stop all
of them.

A.2 Changes to the controlling level for list mode experiments
The controlling level for list mode experiments has been expanded into a full multi-
parameter list mode experiment controlling level. In contrast to previous versions it is
now possible to measure coincident parameters and use both ADC’s of a MCA-board
during list mode experiments.

A.2.1 Variables and constants
• header_length = 2048

The length of the header in 16-bit words of the list mode files.
• dirnam: ARRAY 3 OF char

The directory on the hard disk in which the list mode files are stored by the data server.
• start_file_nr: nat2

The file number of the first file of the list mode file series.
• version_char: char

Used in creating the file names: indicates the version of the list mode series.
• nr_of_samples: nat2

The number of samples taken during the list mode experiment. Corresponds to the number of
files in the list mode file series.

• mod_char: ARRAY 1..max_nr_of_modules OF char
The module identification character for every module. Used for creation of the file names.

• tl_file_name_format: ARRAY 16 OF char
String containing the list mode file name format.

• nr_of_events: ARRAY 1..max_nr_of_modules, 1..max_mod_mem_size OF integer
Array for storing the number of events in every list mode memory for every module. Since all
parameters in a module are coincident, the number of events for every memory in one module
should be equal.

• mem_data: LARRAY 1024*max_nr_of_mems OF nat2
Array for temporary storage of the contents of the list mode memories when reading them out
and saving the contents via the data server.

A.2.2 Routines
• splm

Show Parameters List Mode Allows the user to change the parameters of the list mode
experiment interactively. Parameters that can be changed are e.g. the sample time, the
number of samples, the module identification and version characters needed for the file
names.

• stlm
Start List Mode. Performs a list mode experiment based on the parameters set by the user.
The following routines are used by this routine.

• initialize
Resets the list mode memories to the required memory modes and also resets to MCA’s to the
required MCA modes. This is done according to the module definitions from lvl3.

• read_all_mems

Appendix A Changes to the CEDAS software levels 77

Reads the contents ofll list mode memories in all modules into the variable mem_data[]. The
number of events for every memory is stored into the variable nr_of_events[].

• send_mca_data_to_vax(last: nat1)
Saves the list mode data from the variable mem_data[] via the data server into files on the
hard disk of the Alpha. The exact file format is discussed in appendix B.

A.3 Changes to the controlling level for histogram mode
experiments
This level has also been adapted to the new multi-parameter requirements. The level
now also uses the module definitions from lvl3, so list mode experiments and histogram
mode experiments can be done without having to save the input of the parameters into
the PhyDAS system.

A.3.1 Variables and constants
• max_nr_of_hist_mems = 2 * max_nr_of_mcas

The number of histogram memories available in the system.
• nr_of_hist_mems: integer

The number of histogram memories in use.
• dir_nam: ARRAY 3 OF char

String containg the directory name.
• tl_file_name_format: ARRAY 16 OF char

This variable contains the file name format.
• mod_char: ARRAY 1..max_nr_of_modules OF char

The array containing the module identification characters for every module.
• version_char: char

Contains the version identification character for use in the file name.
• start_file_nr: integer

The file number of the first file in the file series.
• nr_of_samples: integer

The number of samples taken during the experiment
• mca_histogram: ARRAY 1..max_nr_of_hist_mems, 0..4095 OF integer

The array used for intermediate storage of the contents of the histogram mode memories
before saving this data to files.

• nr_of_events_mca: ARRAY 1..max_nr_of_hist_mems OF integer.
Array for storage of the number of events in every histogram memory.

A.3.2 Routines
• sphm

Show parameters histogram mode. Displays a menu via which the user can change the
experiment parameters, like sample times etc.

• stsp
Start spectrum mode experiment. Starts the histogram mode experiment that is done
according to the parameters as set by the user.

• init_spec
Resets all MCA that are to be used in the experiment and initialises nr_of_hist_mems and
mca_histogram[].

• read_hist_mems
Copies the contents of the MCA histogram memories into the array mca_histogram[]. The
contents of the histogram memories are not cleared.

• send_mca_histogram_tovax(last: nat1)
Writes the data from mca_histogram[] into files on hard disk. File names and file format is
according to the new standard as discussed in appendix C.

Appendix B The list mode file format 78

Appendix B
The list mode file format
• Binary file of 16-bit words

• File name: CPV_XXXX.DAT with
C the module identification character
P the memory in the module that the data comes from (starting at 0)
V the version identification character
XXXX the file number (starting at 0)
DAT the extension
Example: A1B_0020.DAT: file with the data of the 2nd memory from the module with id.
character A. This is version B of this file and the filenumber is 20.

• The file contains a header followed by a data area. The header length is flexible (currently set
to 2048 16-bit words) and the length of the data area depends on the number of events in the
file.

• The header format is as follows:

header[0] = length of the header in 16-bit words (currently 2048)
header[1] = low word of the number of events in this file
header[2] = memory mode: 16 if only only parameter and 32 if two parameters are in this file.
header[3] = last file indicator: 2 if not the last file in this series, 3 if it is the last file in this
series
header[4] = high word of the charge
header[5] = low word of the charge
header[6] = low word of the real sample time in units of 10ms
header[7] = dead time in ms
header[8] = high word of the number of events in this file
header[9] = high word of the real sample time in units of 10ms

The rest of the header is filled with zeros.

• The data format is as follows:
If the memory mode is 16 and the list mode data of only one parameter is stored in this file
then the data are consists of a sequence of 16-bit words corresponding to the values of this
parameter for every event. If the memory mode is 32 and the data of two parameters is stored
in this file, then the file will consist of a sequence of 2*16-bit words, one for each parameter
for every event.

Appendix C The histogram mode file format 79

Appendix C
The histogram mode file format
• ASCII text files, case INsensitive
• File name: CPV_XXXX.SPE with

C the module identification character
P the parameter number within the module (starting at 0)
V the version identification character
XXXX the file number (starting at 0)
SPE the extension
Example: A1B_0020.SPE: file with the histogram of the 2nd parameter from the module with
id. character A. This is version B of this file and the filenumber is 20.

• The file consist of several main items starting with the main item name ($...) followed by
several lines of data (subitems).

• The first main item should be $SPEC_ID: and the last main item must be $END:. The order
of the other main items is unimportant.

• The order of the subitems is fixed. New subitems should be added at the end.
• Empty lines between the main items are allowed.
• We will now discuss the available items:

$SPEC_ID:
{text} file description (for user only). Maximum of 80 chars.
$EXP_INFO:
T {time} INT real sample time in 1ms
DT {dead time} INT dead time in 1ms
I {current} INT average current in pA
Q {charge} INT charge in pC
$DETECTOR:
ANGLE {angle} REAL detector angle in degrees
$PREP_POS: position and orientation of the sample
X {x} REAL
Y {y} REAL
Z {z} REAL
T {tilt} REAL
S {spin} REAL
R {rotation} REAL
$SCAN:
NX {#pointsx} INT number of scan pattern points in the x-direction (1 or more)
NY {#pointsy} INT number of scan pattern points in the y-direction (1 or more)
DX {#stepsx} INT distance between the points in the x-direction (in DAC values)
DY {#stepsy} INT distance between the points in the y-direction (in DAC values)
OX {offsetx} INT offset in the x-direction (in DAC-values)
OY {offsety} INT offset in the y-direction (in DAC-values)
$DECODER:
0 {data} INT data for the channeling decoder
.
.
7 {data} INT
$ROI: info about a possible region of interest (ROI)
BEGIN {chan} INT start channel of the ROI
END {chan} INT end channel of the ROI
CNTS {roicounts} INT number of counts in the ROII
$DATA: the actual histogram data (AXIL compatible)
{beginch} {nrch} INT INT start channel of the data and the number of channels to follow
{data} INT value for the start channel
.
.
{data} INT value for the last channel
$LAST_FILE:
{last} INT 0 = more files will follow, 1 = this is the last file in the series
$SUM_SPEC:
{sum} INT 0 = update , 1 = sumspectrum of the series up to now
$END: end of file indicator

Appendix D The user interface module CUI2 80

Appendix D
The user interface module CUI2

D.1 Structures
• Entity info structure
typedef struct {

int dummy;

int nNumFields; /* number of elements of .wdFields[] */

int nCurrentId; /* id of the record currently edited by the entity dialog box */

int nEntity; /* entity dialog box id as used in UIL file(s) */

Widget wdShell; /* popup shell widget used by the entity dialog box */

Widget wdNamesListBox; /* the names list box of the entity */

Widget wdFields[1]; /* widgets of the entity fields. Allocate memory when needed. */

} EntityWidgetInfoRec, *EntityWidgetInfo;

• Combo box info structure
typedef struct {

int dummy;

Widget wdLabel; /* the Label widget of the combo box */

Widget wdDropButton; /* the "Drop" Buton widget of the combo box */

Widget wdGotoButton; /* the "Goto" Button widget of the combo box */

Widget wdListBox; /* the ListBox widget of the combo box */

int nComboBox; /* the combo box id as used in UIL file(s) */

int nReferedId; /* the id of the item that it refered to */

} ComboBoxWidgetInfoRec, *ComboBoxWidgetInfo;

• List box info structure
typedef struct {

int dummy;

int nNumItems; /* number of items contained in the list box */

int nCrossRef; /* an identifier of the cross-ref table to use */

Widget wdComboBox; /* the Widget of the combo box that the ListBox belongs to */

int nSelected; /* the currently selected item in the list */

int nIds[5]; /* the secondary entity id’s of which the names are listed in the list box */

/* may also contain one or more integers for additional data fields in a */

/* structure, like the par. sequence nr. in the par_in_module crossref. */

} ListBoxWidgetInfoRec, *ListBoxWidgetInfo;

• Cross reference info structure
typedef struct {

int dummy;

int nNumItems; /* number of items contained in the list box */

int nCrossRef; /* an identifier on the cross-ref table to use */

Widget wdComboBox; /* for compatibility only */

int nSelected; /* the currently selected item in the list */

int nIds[5]; /* the secondary entity id’s of which the names are listed in the list box */

/* may also contain one or more integers for additional data fields in a */

/* structure, like the par. sequence nr. in the par_in_module crossref. */

} CrossRefWidgetInfoRec, *CrossRefWidgetInfo;

Appendix D The user interface module CUI2 81

The cross refererence info structure and the list box info structure are used
interchangeably. Therefore the size and contents of these structures should be the
same!

D.2 Routines
• int main(unsigned argc, char **argv)

Program entry point. Calls Initialize(), COMMSetLogWindow() and XtMainLoop().
• void UIMessage(char *sMessage, void *vExtra)

Displays a message dialog box with the message sMessage. vExtra may be an extra variable
for use in formatted strings. The XmNokCallback function is set to DestroyMessageBox.

• void UIBeep()
Gives a beep.

• int UIChoice(char *sMessage, void *vExtra, int bAlsoCancel)
Displays a message box with the question sMessage. vExtra may be an extra parameter for
use in formatted strings. The question box contains a YES and NO button. If
bAlsoCancel=TRUE then a cancel button is added. Via the callback function CautionAnswer
the user’s choice is returned (CC_YES/CC_NO/CC_CANCEL)

• void UISetState(char *sState, void *vExtra)
Writes the string sState to the status line. vExtra can be used for additional arguments.

• void UIGetOut(int nErrorLevel)
Quits the program after aborting monitoring, destroying all graphics, closeing the data base
and terminating communication with PhyDAS. nErrorLevel is returned.

• int UIShowCommand(int bShow)
Shows/hides the command line window uppon bShow. The height of the command line
window is returned.

• void UIProcessPendingEvents()
Processes all pending events.

• static void Initialize(unsigned *pargc, char **argv)
Initialisation: Error handling, application shell creation, interpretation of command line
parameters (in argv), connection to the Oracle data base, UIL resource file is opened and the
widget hierarchy is fetched, main window and top level window creation

• static int NonFatalErrorHandler(Display *display, XErrorEvent *errorEvent)
Non-fatal error handler.

• static int FatalErrorHandler(Display *display)
Fatal error handler.

• static Widget FetchNewWindow(char *sWdIndex, Widget wdParent)
The window called sWdIndex is fetch from the resource file and managed as a child of widget
wdParent. The widget handle of the window is returned.

• static void MakeEntity(int nEntity, int nFirstId)
Fetches the window for the entity nEntity as a child of the main window. The entity info
structure is filled and the entity fields are filled by data from the data base for the id
nFirstId.

• static void FillNamesListBox(Widget wdListBox, int nId, char *sName)
Callback function called back by the data base routines for every entry in the listbox. The
string sName is added to the list box with widget handle wdListBOx and the corresponding id
nId is added to the listbox structure.

• static void fFillGraphParListBox(struct stRowType *pRow)
Callback function on DBGetRow(). Fills the Module parameter listbox in the Graphic entity
window.

• static void MenuActivate(XmPushButtonGadget wd, int *pnMenuItem, unsigned
long reason)
Callback function for push buttons from the menu.

• static void CreateEntity(XmPushButtonGadget wd, int *pnEntity, unsigned long
reason)

Appendix D The user interface module CUI2 82

Callback function for creating a new entity. Calls MakeEntity().
• static void CreateField(Widget wd, int *pbEntityIsGrandParent, unsigned long

*reason)
Callback function on every field in an entity. Creates the entity info structure if needed, and
adds the field widget to thee field widget list in the entity info structure. The number of fields
is also updated.

• static void CreateCrossRef(Widget wd, int *pnCrossRef, unsigned long reason)
(Re)allocated memory for the cross reference info structure. Some info is written to this
structure, like the listbox that corresponds to this cross reference. Furthermore the cross
reference is added as a field to the entity that it belongs to.

• static void DialogGotFocus(Widget wd, char *sText, unsigned long reason)
Callback function for updating the state line text.

• static void CreateOkCancel(XmBulletinBoardWidget wd, int *pbVertical, unsigned
long reason)
Callback for creating the OK and Cancel button window in an entity window. The window is
added to the entity info structure as field nr. 0.

• static void PushOkCancelButton(XmPushButtonWidget wd, int bOk, unsigned long
reason)
Callback function, called upon pressing Ok or Cancel in an entity window. The entity window
is unmanaged, and when the Ok button was pressed, the data from the entity fields is save to
the data base (after user confirmation) by calling UIDBSaveEntity().

• static void DestroyMessageBox(XmMessageBoxWidget wd, XmMessageBoxWidget
wdMessage, unsigned long reason)
Callback function on pressing Ok in the message box dialog. The message box is destroyed.

• static void CautionAnswer(XmMessageBoxWidget wd, int nAnswer, unsigned long
reason)
Callback function that handles the return of the answer on the caution box dialog.

• static void ComboBoxDrop(XmPushButtonWidget wd, int nDummy, unsigned long
*reason)
Callback function called on pressing a drop button of a combo box. The drop list box is created
and filled or destroyed is already existing.

• static void ComboBoxCreate(Widget wd, int *pnComboBox, unsigned long *reason)
Callback function for creating a combo box. A combo box consists of a text field, a drop button
and possibly a goto button. A combobox info structure is created together with a field entry in
the entities info structure.

• static void ComboBoxGoto(Widget wd, int nTargetDialogBox, unsigned long
reason)
Called upon pressing the goto button of a combo box. The corresponding entity is created.

• static void PushButton(XmPushButtonWidget wd, int *pnButton, unsigned long
reason)
Callback function for push buttons.

• static void ToggleButton(XmToggleButtonWidget wd, int *pnButton, unsigned long
reason)
Callback function for toggle buttons

• static void CreateWindow(Widget wd, int *pnWindow, unsigned long *reason)
Callback function for the creation of general windows, like the state line, command line work
window and several list boxes.

• static void CompTypesSelect(XmListWidget wd, int nDummy,
XmListCallbackStruct *stList)
Callback function called on selecting an item from the list of predefined component types.

• static void ParTypesSelect(XmListWIdget wd, int nDummy, XmListCallbackStruct
*stList)
Callback function called on selecting an item from the list of predefined parameter types.

• static void CrossRefSelect(XmListWidget wd, int nDummy, XmListCallbackStruct
’*stList)

Appendix D The user interface module CUI2 83

Callback function called on selecting an item from the listbox corresponding to a cross
reference.

• static void ComboListBoxSelect(XmListWidget wd, int nDummy,
XmListCallbackStruct *stList)
Callback function called on selecting an item from the combo box list.

• static void NamesListBoxSelect(XmListWidget wd, int nDummy,
XmListCallbackStruct *stList)
Callback function called on selecting an item from the names list box.

• static void CommandEntered(Widget wd, int nDummy, XmCommandCallbackStruct
*stCommand)

Callback function called on entering a command at the command line.
• static void StartUpSort(void)

Calls the list mode data sorting program SORTLMDATA with data from the data base.
• void StartUpCalibration(int nSerId)

Starts the off-line analysis program Calibration Egg with data from the data base.
• void StartUpAnalysis(int nSerId)

Starts the off-line analysis program Analyssi Egg with data from the data base.
• Dimension Width_of_Widget(Widget wd)

Returns the width in pixels of a widget.
• Dimension Height_of_Widget(Widget wd)

Returns the height in pixels of a widget.
• Position XPos_of_Widget(Widget wd)

Returns the x position of a widget in pixels.
• Position YPos_of_Widget(Widget wd)

Returns the y position of a widget in pixels.

Appendix E The data base module CUIDB2 84

Appendix E
The data base module CUIDB2

E.1 Structures
• Field info structure
typedef struct {

char *sFieldName; /* the field name as known by the database */

int nType; /* the type of the field */

} FieldInfoRec, *FieldInfo;

E.2 Variables
• FieldInfo stEntityFields[]

The field info structures for every entity.
• char *sTables[]

The table names as they are passed to the data base.
• char *sEntities[]

The names of the entity dialogs in the UIL file.
• FieldInfo stCrossRefFields[]

Array containing the cross reference field info structures for all cross references.
• char *sCRTables[]

The cross reference table names as they are passed to the data base.
• int nCRNumFields[]

The number of fields for every cross reference. Usually equal to 2.
• int nCREntities[]

The entity dialog in which the cross references can be edited.
• int nComboBoxGoto[]

The entity of which the dialog should be created when pressing a goto button
• char *sComponentTypes[]

The predefined list of available components
• int nComponentTypes

The number of predefined components
• char *sParameterTypes[]

The predefined list of the parameter types
• int nParameterTypes

The number of predefined parameter types

E.3 Routines
• void fFillstRow(struct stRowType *pRow)

Callback function used by UIDBLoadEntity for a DBGetRow call
• void UIDBLoadEntity(XmBulletingBoardWidget wdEntity, int bNew)

Fill a the fields of an entity dialog with data from the data base. If bNew=TRUE then default
values are provided.

• int UIDBSaveEntity(XmBulletinBoardWidget wdEntity, int bReplace)
Saves the contents of the entity dialog fields to the data base. If bReplace=TRUE an existing
record will be replaced.

• void UIDBFillListBox(XmListWidget wdListBox, int nId, char *sName)
Callback function by DBGetWholeColumn() in order to add an item to a list box.

• static void FillCrossRef(struct stRowType *pRow)
Callback function by DBGetRow() in order to add an item to a cross reference list box.

• void FillNoFieldListBox(XmListWidget wdListBox, int nId, char *sReferedId)
Callback function by DBGetWholeColumn() for adding an entry to a general list box.

Appendix F The monitoring module CMON2 85

Appendix F
The monitoring module CMON2

F.1 Structures
• File Parameter info structure
typedef struct {

int nMemoryMode; /* 16 for 1 parameter in this file, 32 for 2 parameters in this file */

int nFirstParId; /* the id of the parameter */

char sFirstParType[DB_VALUELENGTH];

/* the type op the parameter (Energy, PIN, Equation etc.) */

int nSecondParId; /* the id of the parameter */

char sSecondParType[DB_VALUELENGTH];

/* the type op the parameter (Energy, PIN, Equation etc.) */

int nParSeqNr; /* the parameter filenr. used to create te file name */

FILE *fFile; /* the file structure pointer to the file where this parameter */

/* can be retrieved from */

unsigned short bufferFirst[MON_MAXBUFSIZE];

/* buffer for the first parameter in the file */

unsigned short bufferSecond[MON_MAXBUFSIZE];

/* buffer for the last parameter in this file */

} FileParameterInfoRec, *FileParameterInfo;

• Parameter window info structure
typedef struct {

int nParId; /* the id of the parameter */

unsigned short *nParBuffer; /* pointer to the correct buffer in the fileparameterinfo for the par-id */

int nLowerLimit; /* lower limit value for this parameter */

int nUpperLimit; /* upper limit value for this parameter */

} ParameterWindowInfoRec, *ParameterWindowInfo;

• Module info structure
typedef struct {

int nModuleId;; /* the module id */

char sPath[MFIL_PATHLENGTH]; /* the path where the fileseries are located */

int nFirstIndex; /* the file nr. of the first file in the series */

int nLastIndex; /* the file nr. of the last file in the series */

char sModuleChar[MFIL_PATHLENGTH];

/* the module identification character */

char sVersionChar[MFIL_PATHLENGTH];

/* the version identification character */

int nFileType; /* indicates if we’re dealing with listmode or histogrammode fileseries */

int nCurFileNumber; /* the currently opened file number */

int nBufferSize; /* actual size of the read buffers */

int nBufferIndex; /* current index in the buffer */

int nDataIndex; /* current index in the list mode data series */

int nFileLength; /* the number of events in the current file */

int nCounts; /* the total number of counts that have come from this module */

int nCurrent; /* the average current while the currently opened file has been written */

int nCharge; /* the charge (in pC) that has been cumulated till now */

int bFinished; /* boolean: no more data coming from this module */

int bLastFile; /* boolean: the currently read file is the last one */

 int bWaiting; /* boolean: waiting for phydas to deliver new data (write new files) */

Appendix F The monitoring module CMON2 86

int nCloturingGraphic; /* the last graphic using this module: the one who steps to next event */

int nNumFiles; /* the number of parameters for this module */

int nNumPars; /* the number of parameters for this module */

FileParameterInfo *stFileParameter;

/* the structure containing the info about the parameters in this module */

} ModuleInfoRec, *ModuleInfo;

• Scan position structure
typedef struct {

unsigned short x; /* the DAC value for horizontal positioning of the scan magnet */

unsigned short y; /* the DAC value for horizontal positioning of the scan magnet */

} ScanPosition, *ScanPositions;

• Graphic info structure
typedef struct {

int nGraphId; /* the id of the graphic */

int nXParId; /* the id of the parameter to be plotted along the x-axis */

unsigned short *nXParBuffer; /* pointer to the correct buffer in the fileparameterinfo for the x-par-id */

int nYParId; /* the id of the parameter to be plotted along the y-axis (if necessary) */

unsigned short *nYParBuffer; /* pointer to the correct buffer in the fileparameterinfo for the y-par-id */

int nType; /* indicates if it is a 1 parameter of 2 parameter graphic */

int nNormBoolean; /* indicates if the graphic is to be normalized */

int nNormParId; /* id of the parameter that is to be used to normalize the graphic */

unsigned short *nNormParBuffer;

/* pointer to the buffer in the fileparameterinfo for the norm-par-id */

int nNumPars; /* the number of parameter limitations for this graphic */

ParameterWindowInfo *stParameterWindow;

/* the structure containing info about windows on parameters in this module */

ModuleInfo stModule; /* the module used by this graphic */

Widget wd; /* the GraphicWindow widget */

Widget wdDialog; /* the GraphicWindow’s parent widget */

Widget wdControlMenu; /* the GraphicWindow’s control menu */

char sTitle[MON_TITLELENGTH]; /* the graphic’s title */

int nFromX; /* the start channel of the x-axis */

int nToX; /* the end channel of the x-axis */

int nFromY; /* the start channel of the y-axis */

int nToY; /* the end channel of the y-axis */

int nFromCounts; /* the start of the counts axis */

int nToCounts; /* the end of the counts axis */

int nXInterval; /* the number of channels on the x-axis */

int nYInterval; /* the number of channels on the y-axis */

int nCountsInterval; /* the length of the counts axis */

int nWidth; /* the width of the graphic in pixels */

int nHeight; /* the height of the graphic in pixels */

int nXOrigin; /* the x coord of the origin in pixels */

int nYOrigin; /* the y coord of the origin in pixels */

float nXScale; /* the scale of the x-axis */

float nYScale; /* the scale of the y-axis */

float nLinCountsScale; /* the scale of the linear counts-axis */

int nLogCountsScale; /* the scale of the log counts-axis */

int nMonitoredCounts; /* the number of counts monitored in this graphic */

int nMaxCounts; /* the maximum number of counts int this graphic */

int nMinCounts; /* the minimum number of counts in this graphic */

int bLog; /* logaritmic scale for counts if true, else linear */

int *nLogScale; /* XtMalloc: length=(graphic height or num. colors). */

 /* nLogScale[i]=10̂ (i*nYScale/length) */

Appendix F The monitoring module CMON2 87

int *nData; /* XtMalloc: the number of counts for every data point */

unsigned short *nLogData; /* XtMalloc: nLogScale[nLogData[i]]~nData[i]. */

/* Bit 15: boolean: value changed */

} GraphicInfoRec, *GraphicInfo;

• File header structure
typedef struct {

unsigned short nHeaderLength; /* the length of the file header (in bytes) */

unsigned short nDataLengthLow; /* least significant part of the length of the data block (in bytes) */

unsigned short nMemoryMode; /* the memory mode (16 or 32)*/

unsigned short bLastFile; /* boolean: last file of the series */

unsigned short nChargeHigh; /* most significant part of the charge (in pC) */

unsigned short nChargeLow; /* less significant part of the charge (in pC) */

unsigned short nTimeLow; /* time (in 0.01s) it has taken to measue the data written in the file file */

unsigned short nDeadTime; /* dead time of the MCA’s */

unsigned short nDataLengthHigh; /* most significant part of the length of the data block (in bytes) */

unsigned short nTimeHigh;

} FileHeaderRec, *FileHeader;

F.2 Variables
• static GraphicInfo *stGraphics

Array of pointers to the graphic info structures for all current graphics.
• static int nNumGraphics

The current number of graphics.
• static ModuleInfo *stModules

Array of pointers to the module info structures for all current modules.
• static int nNumModules

The current number of modules.

F.3 Routines
• void MONStop()

Stops monitoring as soon as possible. (Sets bStopped to TRUE)
• int MONContinue()

Continues monitoring after it was stopped by the user. Returns FALSE if the monitoring
could not be continued

• int MONBusy()
Returns TRUE is monitoring is busy.

• void MONClearUp()
Destroys all graphic windows and frees the memory associated with them.

• void MONSetSpeed(int nSpeed1, int nSpeed2, int nSpeed3)
Changes the monitoring speed (at once): update period, lost events and read buffer size.

• void MONGetSpeed(int *pnSpeed1, int *pnSpeed2, int *pnSpeed3)
Returns the parameters associated with the current monitoring speed.

• void MONCascade()
Resizes and moves all graphic windows into cascade.

• void MONTile()
Resizes and tiles all graphic windows.

• int MONStart(Widget wdMonit, int nExpId, int bMultiColor, char *sMoncolors)
Handles the list mode monitoring for one experiment. Returns TRUE/FALSE upon
success/failure.

• static void EchoGetScanPattern(char *sEcho)
Callback function for obtaining the scan pattern coming from PhyDAS.

• static int MakeStandardPattern(int nStandardNr)
Creates a scan pattern based on the provided standard number.

• static void fFillGraphic(struct stRowType *pRow)

Appendix F The monitoring module CMON2 88

Callback function by DBGetRow for each graphic with the correct module. The row structure
contains the id of the monitoring demand and the id of the graphic. Allocates memory for
storing the graphic info structure and fills the structure. If needed the memory for the
corresponding module’s info structure is also allocated and that structure is filled also.

• static void fFillParameterWindow(struct stRowType *pRow)
Callback function by DBGetRow() for each parameter with the correct module. The row
structure contains the id of the graphic, the id of the parameter and the lower and upper
limit for this parameter’s value. If needed memory is allocated for storing the parameter
window info structure and the structure is filled.

• static void fFillModuleParameter(struct stRowType *pRow)
Callback function by DBGetRow() for every parameter with the correct module. The row
structure contains the id of the module, the id of the parameter, the parameter sequence
number and the parameter sub sequence number. If needed memory is allocated for the file
parameter info structure and it is filled.

• static void fFillModuleSeries(struct stRowType *pRow)
Callback function by DBGetRow() for each fileseries with the correct experiment id, module
id and filetype. The row structure contains: the id of the file series, the id of the module, the
path name of the file series the first and last file number of the file series, the module and
version identification character and the file type. This data is written to the module info
structure.

• static void MainMonitoringLoop()
The main loop for working out the list mode monitoring

• static int OpenFiles(ModuleInfo stModule)
Opens all files for the module. Then reads the headers and return TRUE/FALSE upon
succes/failure.

• static void CloseFiles(ModuleInfo stModule)
Closes all files for the module

• static int ReadFiles(ModuleInfo stModule)
Reads data from the files via buffers. Returns FALSE on end of file.

• static int ReadBuffers(ModuleInfo stModule, int nBeginAt, int nStep)
Reads an amount of data from all module files into buffers. PEP integers are converted
into VMS short integers. Returns TRUE/FALSE upon success/failure.

• static void UpdateGraphic(GraphicInfo stGraph, int bDrawAll)
Updates a graphic based upon the graphic type.

• static void GraphicExposed(Widget wd, GraphicInfo stGraph,
XmDrawingAreaCallbackStruct *callBack)
Callback function on a graphic expose event. Redraws the graphic.

• static void RedrawGraphic(Widget wd, GraphicInfo stGraph, unsigned long
*reason)
Redraws the whole graphic.

• static void DestroyGraphic(Widget wd, Graphic stGraph, unsigned long *reason)
Callback function called when a graphic window is closed or destroyed.

• static void EnableDragAndControl(Widget wd)
Enables the dragging and raising of windows and other mouse actions.

• static void TrackHandler(Widget wd, Opaque closure, XMotionEvent *eventP)
Handles the Button2Motion events. Displays the coordinates of the mouse position within the
graphic.

• static void ButtonPressHandler(Widget wd, Widget wdGraph, XButtonEvent
*eventP)
Handles the ButtonPressHandler events for zooming, contour definitions and control menu
actions.

• static Widget CreateControlMenu(GraphicInfo stCurGraph)
Creates a control menu for this graphic that is popped up op MB3 press. The widget of the
created control menu is returned.

• static void ActivateControlMenu(XmPushButtonWidget wd, int nItem, unsigned
long *reason)

Appendix F The monitoring module CMON2 89

Callback function for handling control menu selections.
• static void RecalculateScales(Widget wd, GraphicInfo stGraph, unsigned long

*reason)
Recalculates the X and Y axis scales, based on the current width and height of the graphic.

• static void RecalculateCountsScale(GraphicInfo stGraph, int nMaxCounts)
Recalculates the countsscale of the graphic, based on the height or the number of colours of
the graphic.

• static int RecalculateLogScale(GraphicInfo stGraph)
(Re)allocates memory for storing the pre-calculated values of the logarithmic scale of the
graphic.

• static int FloatToInt(double x)
Float to Integer type conversion function

• static unsigned short PEPToVMS(unsigned short x)
PEP to VMS type conversion function

• static void WaitingUIMessage(char *sFileName)
Displays the Waiting for PhyDAS message using the same message box, so the user doesn’t
have to click every time this message appears.

• static void DestroyWaitingBox(Widget wd, Widget wdWait, unsigned long *reason)
Callback function for destroying the waiting message box.

• static void PrintWindow(Widget wd)
Dumps the contents of the refered window into a HP Paintjet file.

• static void SaveWindow(Widget wd)
Saves the contents of the refered window into a Windows 3.0 bitmap file.

Appendix G The entities for the Columbus data base 90

Appendix G
The Columbus data base entities

In this appendix all entities from the data base are discussed. The purpose of every
entity and its fields are discussed and an overview of the user interface for editing the
data base if given. The data dictionary of the data base can be found in [GER94].

G.1 The experiment entity

The experiment entity is the central entity in the Columbus data base, as can be seen in
the data base model. It has links to most of the other entities in the data base. It is the
starting point for adding a new experiment to the data base.
Every entity has a record id. field and a name field in the upper left corner. Buttons are
available for selecting an existing entity record and for adding a new record. Usually a
comment text field is available for adding additional comment to an entity record.
The type of the experiment can be selected via toggle buttons. Focus experiments are
currently only done with the micro beam experiment. A calibration experiment may be
an experiment for calibrating the energy signals and all other experiments are of the
type main experiment.
A measuring session consists of several parts. If using the microbeam set-up first of all
a focus experiment is performed for minimizing the beam spot size on the sample. Then
a calibration experiment may be done before the other main experiments are started.
Via the focus experiment combo box in the experiment entity dialog box a reference can
be set to the corresponding focus experiment for calibration and main experiments.
Via the calibration experiment combo box a reference is set to the corresponding
calibration experiment for the main experiments.
The reference to the experiment configuration that was used for the experiment can be
set via the experiment configuration combo box. The user combo box is used to specify
the user that performed the experiment. Furthermore the sample that was used during

Figure G.1: The experiment entity dialog

Appendix G The entities for the Columbus data base 91

the experiment can be refered to. When using a scan pattern during the experiment
(only for the microbeam set-up) this can be refered to via the scan pattern combo box.
The last reference that can be set is a reference to a monitoring demand entity record
that contains the info about the graphics that have to be displayed during monitoring
the experiment.
Two list boxes are available that contain a list of resp. the fileseries entity records and
the analysis result entity records that refer to the experiment.
Finally the experiment entity dialog contains some fields that are not references to
other entities but that contain general data, like the time and date of the experiment,
beam information and slit settings.

G.2 The configuration entity

In the configuration entity first of all the experiment set-up can be specified via a set of
toggle buttons. Furthermore this entity dialog is used to edit the Module_in_Config
cross reference for specifiying what modules are used in this experiment configuration.

G.3 The module entity

Figure G.2: Configuration entity dialog

Appendix G The entities for the Columbus data base 92

Via the module entity dialog two cross reference entities can be edited; the
Comp_in_Module cross reference for setting the hardware components of which a
module consists and the Par_in_Module cross reference for setting the parameters that
are contained in this module. For every parameter two extra specifications have to be
set. First of all the sequence number of the parameter within this module. This
corresponds to the sequence number within the module of the list mode memory in
which the parameter’s data is stored during list mode experiments of the sequence
number within the module of the histogram mode memory in which the histogram for
the parameter is collected during histogram mode experiment. Because list mode
memories can contain two parameters a sub-sequence number is indicated if the
parameter is the first or the second parameter within the memory.

G.4 The module component entity

This entity is used for defining a module component. The type of the component can be
selected from a list of predefined types. A specific data field is added for future use
purposes.

Figure G.3: The module entity dialog

Figure G.4: The module component
entity

Appendix G The entities for the Columbus data base 93

G.5 The module parameter entity

This entity is used for defining a module parameter. The type of the parameter can be
selected from a list of predefined types. A specific data field is added for future use
purposes.

G.6 The file series entity

A file series refers to both an experiment and a module. A files of a file series contain
the data of all parameter in the corresponding module. Furthermore the entity contains
fiels for specifying the directory path where the files of the series can be found, the first
and the last file number of the series and a module identification and version
identification character for creating the file names. The type of the data of the file series
(list mode data or histogram mode data) can be specified via a set of toggle buttons.

G.7 The monitoring demand entity

Figure G.5: The module parameter
entity

Figure G.6: The file series entity

Appendix G The entities for the Columbus data base 94

Via the monitoring demand entity dialog the Graph_in_Mon cross reference can be
edited. It is used to specify what graphics are to be displayed during monitoring.

G.8 The graphic entity
Via the graphic entity the layout of a graphic can be specified. First of all a reference to
a module has to be set via which the available parameters can be retrieved. Then a
reference to one or two parameters of which a histogram has to be created and shown.
This can be a one parameter histogram with the parameter channel versus the yield or
a two parameter scatterplot with the yield as a function of the channels of two
parameter.
Furthermore a reference can be set to a parameter that will be used for normalizing the
graphic to the integral yield of this parameter.

Finally the Par_in_Graph cross reference can be edited for setting conditions on
parameters. A condition consists of a reference to a parameter and a minimum and
maximum (integer) value for that parameter.

Figure G.7: The monitoring demand entity

Figure G.8: The graphic entity

Appendix G The entities for the Columbus data base 95

G.9 The sample entity

The sample entity is used for storing info about a sample. A reference can be set to a
client that provided the sample. Two listboxes are available containing an list of
references from the analysis demand entity and the photo entity to this sample.
Data fields are available for specifying a minimum sample frequency that is needed to
prevent destruction of the sample when using it in the microbeam set-up, for the mass
thickness of the sample and for the number of the location of the sample within the
target holder.

G.10 The user entity
For specifying a user. Together with a name the telephone number and the status of the
user can be specified.

G.11 The client entity

Figure G.9: The sample entity

Figure G.10: The user
entity

Appendix G The entities for the Columbus data base 96

For specifying a client for whom analysis has to performed on a sample. Together with a
name the phone number of the client can be specified.

G.12 The analysis demand entity

The analysis demand entity is for specifying a type of analysis that has to be performed
on a sample. It is not yet fully specified, but it will have to contain a reference to a
sample.

G.13 The analysis result entity
The analysis result entity is for storing the results of an analysis sequence into the data
base. Although it is not yet fully specified if will at least have to contain a reference to
an experiment and a module of which the data has been analysed. Most likely a
reference to a file containing the analysis results will have to be added.

Figure G.11: The client
entity

Figure G.12: The analysis demand entity

Figure G.13: The analysis result entity

Appendix G The entities for the Columbus data base 97

G.14 The photo entity

The photo entity is used for storing info about a photograph that has been taken of a
sample with a CCD camera and video frame grabber. It contains a reference to this
sample and fields for specifying the date and time at which the photo was taken and the
location of the picture file on disk.

G.15 The scan pattern entity

The scan pattern entity is for specifying the shape of a scan pattern. Only standard
scan patterns are supported at the moment. For a standard scan pattern, together with
the standard number, the horizontal and vertical number of points, the distance
between these points and an offset has to be specified.

Figure G.14: The photo entity

Figure G.15: The scan pattern entity

